MODELING OF THE THREE-BODY EFFECTS IN THE NEUTRAL TRIMERS IN THE QUARTET STATE BY ab initio CALCULATIONS. $\mathbf{H}_{3}, \mathrm{Na}_{3}$, AND $\mathrm{Na}_{\mathbf{2}} \mathbf{B}$

Jacek Jakowski ${ }^{a 1,+}$, Grzegorz Chałasiński ${ }^{a 2, *,++}$, Malgorzata M. SzCześniak ${ }^{b}$ and Slawomir M. Cybulski ${ }^{c}$
${ }^{a}$ Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; e-mail: ${ }^{1}$ jakow@chem.uw.edu.pl, ${ }^{2}$ chalbie@chem.uw.edu.pl
${ }^{b}$ Department of Chemistry, Oakland University, Rochester, MI 48309, U.S.A.; e-mail: maria@ouchem.chem.oakland.edu
${ }^{c}$ Department of Chemistry, Miami University, Oxford, OH 45056, U.S.A.; e-mail: cybulssm@muohio.edu

Received August 12, 2002
Accepted November 11, 2002

Dedicated to Professors Petr Čársky, Ivan Hubač and Miroslav Urban:
"In the mustardseed sun,
By full tilt river and switchback sea
Where the cormorants scud,
In their house on stilts high among beaks
And palavers of birds
This sandgrain day in the bent bay's grave
They celebrate and spurn
their driftwood sixtieth wind turned age;
herons spire and spear."
(Dylan Thomas)

The $\mathrm{Na}_{2} \mathrm{~B}, \mathrm{Na}_{3}$, and H_{3} trimers in the lowest quartet states were studied by ab initio methods, using both the supermolecular approach and the intermolecular Møller-Plesset perturbation theory. Partitioning of the nonadditive contribution into the orientational two-body part and the genuine three-body part was proposed. The lowest quartet state of the Na_{3} trimer and all the three lowest quartet states of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer are bound, and the forms of these clusters are essentially determined by two-body forces. In the case of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer the orientational two-body nonadditivity proved to be crucial. In addition, in the title metal trimers, in the region of the van der Waals minima, the genuine nonadditivity is very important, and amounts to 30% in $\mathrm{Na}_{2} \mathrm{~B}$ and up to 70% in Na_{3}. The leading nonadditive term

[^0]is the triple-exchange Heitler-London exchange term. For triangular arrangements it considerably enhances the total stabilization. The single-exchange term and the SCF deformation play only a secondary role. The dispersion nonadditivity is negligible. The isotropic part of the basis set superposition error (BSSE) is large and must be corrected by the counterpoise method. The anisotropic contribution to BSSE is practically negligible.
Keywords: Perturbation theory, Counterpoise method; Sodium; Hydrogen; Trimers; Ab initio calculations; Clusters.

Recently, increasing experimental and theoretical efforts have been devoted to study the interaction of metal atoms ${ }^{1-9}$. The alkali metal complexes have been extensively studied by Gutowski and co-workers ${ }^{6,8,10,11}$. Boron, which is a prototype of the IIIA group, has been studied by Alexander, Dagdigian and their collaborators ${ }^{12-17}$.

Our interest in the three-body forces in the quartet state neutral trimers stems from the fact that recent theoretical and experimental results for $\mathrm{Na}_{3}{ }^{10,11}$ suggested a critical role for the nonadditive forces in stabilizing the trimer. According to Higgins et al. ${ }^{11}$, the $\mathrm{A}_{2}^{\prime} \mathrm{Na}_{3}$ potential energy surface is characterized by a $D_{3 h}$ symmetry minimum of $-850 \mathrm{~cm}^{-1}$ (relative to the three ground state ${ }^{2}$ S Na atom dissociation limit) with the bond distance of $4.406 \AA$. This bond distance differs by about $0.8 \AA$ from the value of $5.2 \AA$ found for the sodium triplet dimer. The three-body effect thus amounts to $-694 \mathrm{~cm}^{-1}$, and accounts for almost 80% of the well depth of the trimer! The authors stipulated that "this large three-body contribution is caused by the decreased overlap repulsion of the electrons in the trimer which is due to the highly deformable valence electron shells of the interacting sodium atoms". In the language of the symmetry adapted perturbation theory (SAPT) of intermolecular interactions ${ }^{18-20}$, this is the exchange nonadditivity which is responsible for the huge extra stabilization and sizeable shrinking of the trimer. There are several exchange nonadditive mechanisms which can produce three-body contributions of a different character. It is of great interest to find out what mechanism dominates the total exchange nonadditive effect.
The striking behavior of the quartet state of Na_{3} motivated us to study another candidate likely to reveal an important three-body effect, the yet undiscovered $\mathrm{Na}_{2} \mathrm{~B}$ trimer. The quartet state $\mathrm{Na}_{2} \mathrm{~B}$ trimer with the valence $2 s_{B}^{2} 2 p_{B}^{1} 3 s_{N a 1}^{1} 3 s_{N a 2}^{1}$ electron configuration represents a simple model to study the anisotropy of the three-body exchange terms and other nonadditive contributions originating from a singly occupied p-symmetry orbital of boron. It is also the simplest model of a metallic cluster with an impurity.

Such clusters have recently been studied by several groups, as amply documented by Alonso and Lopez21.

The interaction of two $\left({ }^{2} \mathrm{~S}\right) \mathrm{Na}$ and $\left({ }^{2} \mathrm{P}\right) \mathrm{B}$ in the isosceles triangle form leads to three different orientations of the singly occupied p orbital in the $N a_{2} B$ trimer: a_{1}, b_{1}, and b_{2} of the $C_{2 v}$ point group symmetry (Fig. 1). The 3 s orbitals of the two Na atoms generate two singly occupied molecular orbitals, a_{1} and b_{2}. As a consequence of three possible orientations of the p orbital, three different states of the $N a_{2} B$ arise: B_{2}, A_{2}, and A_{1}, which relate respectively to a_{1}, b_{1}, and b_{2} orientations of p orbital.

In the supermolecular approach, the interaction energy of the trimer is calculated as the difference between the energy of the complex and the monomer energies

$$
\begin{equation*}
E_{\text {int }}(A B C)=E(A B C)-E(A)-E(B)-E(C), \tag{1}
\end{equation*}
$$

where $E(A B C)$ is the trimer energy, and $E(A), E(B)$, and $E(C)$ are monomer energies. $E_{\text {int }}(A B C)$ may be expressed as the sum of two-body (pair) interactions and a three-body nonadditive effect:

$$
\begin{equation*}
\mathrm{E}_{\text {int }}(\mathrm{ABC})=\mathrm{E}[2,3]+\mathrm{E}[3,3] \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{E}[2,3]=\mathrm{E}_{\mathrm{int}}(\mathrm{AB})+\mathrm{E}_{\mathrm{int}}(\mathrm{BC})+\mathrm{E}_{\mathrm{int}}(\mathrm{AC}) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
E_{i n t}(X Y)=E(X Y)-E(X)-E(Y) \tag{4}
\end{equation*}
$$

Fig. 1
Orientation of the p singly occupied orbital of the B atom in the $\mathrm{Na}_{2} \mathrm{~B}$-like trimers for isosceles geometries (the $C_{2 v}$ point group). In the B_{1} symmetry the p orbital is perpendicular to the $\mathrm{Na}_{2} \mathrm{~B}$ plane
and the three-body part is defined recursively

$$
\begin{equation*}
\mathrm{E}[3,3]=\mathrm{E}_{\mathrm{int}}(\mathrm{ABC})-\mathrm{E}[2,3] . \tag{5}
\end{equation*}
$$

Equations which include subtractions of the energies of monomers, dimers, and the trimer require consistent evaluation:

1. The energies of monomers, dimers, and the trimer should be calculated at the same level of theory. In particular, the method must be size consistent. This condition is fulfilled if one uses unrestricted HF and MP perturbation theory.
2. The energies of monomers, dimers, and the trimer, should be calculated with the same basis set of the whole trimer, a trimer centered basis set (TCBS) ${ }^{18}$.
3. In the case of trimers containing p-symmetry species, the monomer and dimer fragments should have the same orientation of the p-symmetry orbital as it is in the trimer. (The monomers have the orientation defined with respect to the ghost centers in TCBS.)

The first two conditions are well known and easily fulfilled. However, the third condition poses a problem as the orientation of the p-symmetry orbital in the trimer differs from that in the free dimers.

This paper is divided into two parts: the first deals with the H_{3} and Na_{3} trimers, and the second with the $\mathrm{Na}_{2} \mathrm{~B}$ trimer. The trimers were studied by the unrestricted Møller-Plesset (UMPn) perturbation theory within both the supermolecular and intermolecular perturbation frameworks. Including the hydrogen trimer in its quartet state is important because this trimer has served as a benchmark system for several decades, and serves as the simplest model for the treatment of the nonadditive interactions in van der W aals clusters ${ }^{22-27}$.

The main part of this work is devoted to $\mathrm{Na}_{2} \mathrm{~B}$ which, compared with the other two trimers, exhibits a variety of novel features. First, cal culations of the nonadditivity using the supermolecular approach are presented describing the following issues: the rotation of dimer potentials, the orientational nonadditivity, and the evaluation and analysis of the genuine nonadditivity. Next, perturbation cal culations of the genuine nonadditivity are reported. The decomposition of first-order exchange energy is performed using the pseudodimer approach. The role and nature of three-body singleexchange (SE) and triple-exchange (TE) terms are analyzed and discussed.

For details and notation of the perturbation theory of the many-body effects and the pseudodimer approach, the reader is referred to our previous papers ${ }^{18,19,28,29}$.

QUARTET STATE TRIMERS CONSISTING OF s-SYMMETRY MONOMERS

H_{3} Trimer

The hydrogen trimer in its quartet state ${ }^{4} \mathrm{~A}_{2}^{\prime}$ has served as a benchmark system and the simplest model for the treatment of nonadditive interactions in van der Waals clusters ${ }^{22-27}$. To compare our results with previous theoretical studies, we performed some calculations for the triangle arrangements of Korona et al. ${ }^{23}$ with their basis set. The calculations were performed for selected isosceles triangle arrangements of H_{3}. The results were obtained with the aug-cc-pVTZ basis set of Dunning et al. ${ }^{30-32}$, unless otherwise stated. The B126 basis set was used for comparison with ref. ${ }^{23}$

The MP4 supermolecular and pseudodimer results are presented in Tables I and II, respectively. The partitioning of the Heitler-London exchange nonadditivity using the pseudodimer approach was proven to be robust enough for the equilateral-triangle rare gas trimers. Tables III and IV present a comparison with results of Korona et al.

The pairwise interaction energy as well as the whole interaction energy of the H_{3} trimer are repulsive for all distances and levels of theory under consideration (see Table I). However, the correlation corrections to both the two-body and the whole interaction energy reduce the repulsion. In contrast to the pairwise energy, the three-body nonadditivity is attractive for all distances and levels of theory. The percentage value of the nonadditive energy amounts to about 20% of the total interaction energy for shortrange distances.

The three-body nonadditivity is determined by the Heitler-London exchange nonadditivity (see Table II), with the leading TE term. The TE term is attractive for the triangle geometry and repulsive for the linear arrangements of H_{3}. The SE term is of the opposite sign to that of the TE term. This behavior has also been observed for other trimers (e.g. rare gas trimers ${ }^{19}$).

The SE term and the SCF-deformation ($\Delta \mathrm{E}_{\text {def }}^{\text {SCF }}$) term are of secondary importance. The SCF deformation exhibits a repulsive character for the smallest distances and angles. An interesting observation is that $\Delta \mathrm{E}_{\text {def }}^{\text {scF }}$ switches from attractive for $R>3 \AA$ to repulsive for $R<3 \AA$. This is in agreement with the previous findings for rare gas trimers ${ }^{52}$ as well as for the HCl and HF cyclic trimers ${ }^{53}$. This suggests:

Table I
The supermolecular results for the interaction energy in the $\left({ }^{4} \mathrm{~A}_{2}^{\prime}\right) \mathrm{H}_{3}$ trimer for the equilateral arrangement. Energy in $\mu \mathrm{E}_{\mathrm{h}}$

	R, \AA	SCF	MP2	MP3	MP4(SDTQ)	$\%$
$\mathrm{E}_{\text {int }}$ (total)	0.8	493706.60	481262.16	478385.76	477579.29	
	1.4	112448.09	107169.21	105669.76	105158.05	
	2	25798.15	23840.03	23208.66	22976.73	
	2.6	5278.37	4548.01	4294.65	4198.33	
$\mathrm{E}_{\text {int }}$ (2-body)	3.4	518.76	325.43	252.95	224.28	
	1.4	580266.36	568317.93	565210.92	564295.66	
	2	143029.07	137960.30	136449.85	135932.34	
	20912.54	28929.69	28279.13	28041.29		
	3.6	5881.40	5132.49	4870.02	4770.17	
	3.4	542.16	346.72	273.00	243.77	
	0.8	-86559.76	-87055.77	-86825.16	-86716.37	-15.4
	1.4	-30580.98	30791.09	-30780.09	-30774.29	-22.6
	2	-5114.39	-5089.66	-5070.48	-5064.57	-18.1
	2.6	-603.03	-584.48	-575.36	-571.84	-12.0
	3.4	-23.40	-21.30	-20.05	-19.49	-8.0

Table II
The SE and TE contributions to the Heitler-London exchange nonadditivity for the equilateral arrangement of $\left({ }^{4} \mathrm{~A}_{2}^{\prime}\right) \mathrm{H}_{3}$ trimer. The SE_part denotes partial SE term between only two H atoms, while the SE_tot denotes sum of all $S E_{-}$part terms. Energy in $\mu \mathrm{E}_{\mathrm{h}}$

R, \AA	SE_part	SE_tot	TE	$\varepsilon_{\text {exch }}^{\mathrm{HL}}$	$\Delta \mathrm{E}^{\mathrm{SCF}}[3,3]$	$\Delta \mathrm{E}_{\text {def }}^{\text {SCF }}$
0.8	32999	98997	-333384	-234388	-86560	147828
1.4	5060	15179	-56663	-41484	-30581	10903
2	489.21	1467.62	-7277.05	-5809.43	-5114.39	695.04
2.6	35.61	106.82	-729.58	-622.76	-603.03	19.73
3	5.56	16.68	-140.08	-123.40	-124.60	-1.20
3.4	0.81	2.44	-24.97	-22.53	-23.40	-0.87

1. the same nature of $\Delta E_{\text {def }}^{\text {SCF }}$ in these complexes;
2. that there are at least two physically different mechanisms contributing to this correction, one prevailing at small R and the other at Iarge R.
$\Delta \mathrm{E}^{(2)}$ and $\Delta \mathrm{E}^{(3)}$ are smaller by an order of magnitude than the SCF nonadditivity for all distances (see Tables III and IV). One can also note that $\Delta \mathrm{E}^{(3)}$ is smaller than the $\Delta \mathrm{E}^{(2)}$ term for almost all distances. This trend is reversed at large distances (because $\Delta \mathrm{E}^{(3)}$ includes the long-range three-body dispersion term, whereas $\Delta \mathrm{E}^{(2)}$ vanishes exponentially).

A comment on the decomposition of the $\Delta \mathrm{E}^{(2)}$ term should be made. The H_{3} system has no intramonomer correlation effects and thus this term includes three components: the exchange-dispersion, the induction-dispersion, and the exchange-induction-dispersion ${ }^{18}$. The first two corrections have been calculated by Korona et al. ${ }^{23}$ The exchange-dispersion, which is repulsive, prevails at large R and reasonably accounts for the whole second-order

Table III
Comparison of some three-body SAPT contributions calculated by Korona ${ }^{23}$ with HeitlerLondon and supermolecular components for equilateral arrangement of the $\left({ }^{4} \mathrm{~A}_{2}^{\prime}\right) \mathrm{H}_{3}$ trimer for various interatomic distances. Energy in $\mu \mathrm{E}_{\mathrm{h}}$ and interatomic distance in bohrs

$\theta=60$	R, \AA	4	6	7	8	10
Korona	$\mathrm{E}_{\text {exch }}^{(1)}[3,3]$	-3832.0532	-58.9677	-5.8820	-0.5334	-0.0036
(B126)	$\mathrm{E}_{\text {disp }}^{(3)}$	82.5326	3.7533	0.9609	0.2807	0.0349
	$\mathrm{E}_{\text {indd disp }}^{(2)}$	-252.4366	-3.4321	-0.3590	-0.0371	-0.0004
	$\mathrm{E}_{\text {exch-disp }}^{(2)}$	119.8594	5.7741	1.0202	0.1567	0.0029
	$\mathrm{E}_{\text {int }}[3,3]$	-3687.5043	-50.7339	-4.0653	-0.1160	0.0388
Present	SE_part	298.6851	2.3843	0.1792	0.0126	0.0001
(B126)	SE_tot	896.0552	7.1528	0.5375	0.0377	0.0002
	TE	-4728.1061	-66.1205	-6.4194	-0.5711	-0.0038
	$\varepsilon_{\text {exch }}^{\text {HL }}$	-3832.0509	-58.9677	-5.8820	-0.5335	-0.0036
	$\Delta \mathrm{E}_{\text {def }}^{\text {scf }}$	382.3053	-1.4455	-0.3292	-0.0395	-0.0007
	$\Delta \mathrm{E}^{(2)}$	29.0472	4.3117	0.7886	0.1192	0.0020
	$\Delta \mathrm{E}^{(3)}$	17.9448	2.3856	0.5595	0.1326	0.0123
	$\Delta \mathrm{E}^{(4)}$	5.7120	0.9768	0.2541	0.0699	0.0085
	MP4(SDTQ)	-3397.0416	-52.7390	-4.6090	-0.2513	0.0185

term. At small R, however, it appears (cf. Table III) that it is the inductiondispersion accompanied by exchange that dominates.
The total supermolecular and SAPT three-body energies of Korona et al. ${ }^{23}$ agree remarkably well, although some small discrepancies are intriguing. A detailed comparison with the calculations of Korona et al. shows that the first-order exchange energies agree exactly. The second-order UMP threebody effect has a complex structure so it is not possible to compare it precisely with the SAPT energies. However, the third-order UMP energy is usually accurately reproduced by the third-order dispersion. This is not the case here, as even for $\mathrm{R}=8$ and $10 \AA$, these terms markedly differ by a factor of two.

Table IV
Comparison of some SAPT nonadditive results with supermolecular and pseudodimer results for various isosceles geometries. Two $\mathrm{H}-\mathrm{H}$ radii are fixed at $\mathrm{R}=6 \mathrm{bohr}$ and the angle between them is varied. Energy in $\mu \mathrm{E}_{\mathrm{h}}$

$R=6$	Θ	30	60	90	120	150	180
Korona	$\mathrm{E}_{\text {exch }}^{(1)}[3,3]$	-374.7375	-58.9651	-7.4002	-0.3419	0.8839	1.0975
(B81)	$\mathrm{E}_{\text {didp }}^{(3)}$	16.7355	3.6059	0.9746	0.0517	-0.3072	-0.4029
	$\mathrm{E}_{\text {ind-disp }}^{(2)}$	-20.3788	-3.2955	-0.6639	-0.2984	-0.2358	-0.2302
	$\mathrm{E}_{\text {exch-disp }}^{(2)}$	33.8587	5.6679	1.6322	0.8020	0.6703	0.6672
	$\mathrm{E}_{\text {int }}[3,3]$	-316.9620	-50.7872	-4.7160	0.6867	1.3820	1.4803
Present	SE_(H1..H2)	10.5560	2.3843	0.1820	-0.0784	-0.1211	-0.1285
(B126)	SE_(H1..H3)	10.5560	2.3843	0.1820	-0.0784	-0.1211	-0.1285
	SE_(H2..H3)	19.3464	2.3843	0.2426	0.0375	0.0113	0.0075
	SE_tot	40.4584	7.1528	0.6067	-0.1193	-0.2309	-0.2495
	TE	-415.2142	-66.1205	-8.0082	-0.2235	1.1140	1.3461
	$\varepsilon_{\text {exch }}^{\text {HL }}$	-374.7558	-58.9677	-7.4015	-0.3428	0.8831	1.0966
	$\Delta \mathrm{E}_{\text {def }}^{\text {scF }}$	10.7840	-1.4455	-0.3017	0.2577	0.4919	0.5609
	$\Delta \mathrm{E}^{(2)}$	19.0822	4.3117	1.2832	0.4219	0.1690	0.1181
	$\Delta \mathrm{E}^{(3)}$	9.1699	2.3856	0.7804	0.2613	0.0899	0.0518
	$\Delta \mathrm{E}^{(4)}$	3.5045	0.9768	0.3338	0.0855	-0.0118	-0.0371
	MP4(SDTQ)	-332.2152	-52.7390	-5.3059	0.6836	1.6221	1.7903

Na_{3} Trimer
The supermolecular UMPn and IMPPT calculations were performed for the Na trimer in the high-spin ${ }^{4} \mathrm{~A}_{2}^{\prime}$ state. We essentially limited our study to the equilateral-triangle configuration, its side ranging from 2.5 to $7.6 \AA$. Some calculations were performed for two bonds fixed at $4.6 \AA$ and for varied Θ angle between them, in order to expose the anisotropy of the nonadditive terms.

Table V collects the supermolecular results for the trimer, while Table VII provides a comparison of the supermolecular and perturbational energies.

Table V
The supermolecular two-body and three-body components of the total energy of the $\left({ }^{4} \mathrm{~A}_{2}^{\prime}\right) \mathrm{Na}_{3}$ trimer for the equilateral arrangement. Energy in $\mu \mathrm{E}_{\mathrm{h}}$

R, \AA	3.6	4	4.4	4.6	4.8	5	5.2

$\mathrm{E}_{\mathrm{int}}$	SCF	11601.62	6574.60	3744.21	2873.61	2215.27	1711.78	1322.74
	MP2	5463.67	1125.13	-359.48	-693.3	-882.54	-975.5	-1003.51
	MP3	3020	-1002.8	-2037.99	-2171.06	-2180.15	-2112.58	-1998.07
E[2,3]	SCF	21939.88	11851.09	6497.84	4836.55	3608.75	2695.87	2013.49
	MP2	15550.2	6834.23	2562.23	1358.36	544.02	-7.03	-333.15
	MP3	13451.1	5002.35	1022.55	-35.01	-707.28	-1108.92	-1322.34
E[3,3]	SCF	-10338.26	-5375.49	-2753.63	-1962.94	-1393.48	-984.06	-690.75
	MP2	-10086.53	-5709.1	-2921.71	-2051.66	-1426.56	-982.53	-670.35
	MP3	-10431.1	-6005.15	-3060.54	-2136.05	-1472.87	1003.66	-675.73

R, Å		5.4	5.6	6	6.4	6.8	7.2	7.6
$\mathrm{E}_{\text {int }}$	SCF	1019.86	783.13	453.85	255.73	139.88	74.23	38.25
	MP2	-988.25	-945.22	-816.12	-669.27	-529.66	-408.84	-310.48
	MP3	-1856.6	-1701.95	-1387.69	-1097.99	-849.41	-646.42	-486.79
E[2,3]	SCF	1501.52	1116.61	610.19	326.84	171.26	87.69	43.9
	MP2	-535.2	-641.97	-684.24	-614.23	-507.68	-400.47	-307.43
	MP3	-1407.33	-1407.21	-1266.51	-1051.83	-833.73	-642.21	-486.39
E[3,3]	SCF	-481.66	-333.48	-156.34	-71.11	-31.38	-13.47	-5.65
	MP2	-453.05	-303.25	-131.88	-55.03	-21.98	-8.38	-3.05
	MP3	-449.27	-294.74	-121.18	-46.16	-15.68	-4.21	-0.4

From the results of Table V one can tell that the van der Waals minimum of the Na_{2} dimer at the UMP3 level of theory is located at $5.4 \AA$ and is $-469.11 \mu \mathrm{E}_{\mathrm{h}}$ deep, while the minimum of the trimer lies distinctly closer, at the distance equal to $4.8 \AA$, and the interaction energy amounts to $-2180.15 \mu \mathrm{E}_{\mathrm{h}}$. For the equilibrium geometry of Na_{3}, the two-body parts of the interaction energy amount to only 30%, while the rest is the three-body effect. The total nonadditivity is attractive for all distances under consideration, while two-body total effect is attractive for long distances and repulsive for short distances. This is in agreement with the findings of Higgins et al. ${ }^{11}$, who had a better representation of the two-body potential (HF + dispersion model), and thus located the dimer and trimer minima at somewhat shorter distances. Indeed, our MP3 two-body energies are certainly not basis set saturated, and thus not attractive enough - the fourth-order terms would provide additional attraction.

To elucidate the origin of the extraordinarily Iarge three-body forces, perturbation contributions are collected and plotted in Table VI and Fig. 2. The Heitler-London exchange, dispersion and SCF deformation are presented, and compared with the SCF, UMP2, UMP3 and correlation corrections.

Table VI
The $\left({ }^{4} \mathrm{~A}_{2}^{\prime}\right) \mathrm{Na}_{3}$ trimer. Comparison of perturbative results with the SCF deformation and supermolecular results. Energy in $\mu \mathrm{E}_{\mathrm{h}}$

| R, \AA | $\varepsilon_{\text {exch }}^{\mathrm{HL}}$ | $\varepsilon_{\text {disp }}^{(30)}$ | $\Delta \mathrm{E}_{\text {def }}^{\text {SCF }}$ | $\Delta \mathrm{E}^{\mathrm{SCF}}$ | $\mathrm{E}^{(\mathrm{MP2} 2)}$ | $\mathrm{E}^{(\mathrm{MP} 3)}$ | $\Delta \mathrm{E}^{(2)}$ | $\Delta \mathrm{E}^{(3)}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | -4305.37 | 341.22 | -1070.12 | -5375.49 | -5709.10 | -6005.15 | -333.61 | -296.05 |
| 4.2 | -3313.47 | 260.01 | -537.73 | -3851.20 | -4114.68 | -4325.97 | -263.47 | -211.29 |
| 4.4 | -2514.78 | 197.52 | -238.85 | -2753.63 | -2921.71 | -3060.54 | -168.08 | -138.83 |
| 4.6 | -1882.81 | 149.66 | -80.12 | -1962.94 | -2051.66 | -2136.05 | -88.72 | -84.39 |
| 4.8 | -1391.03 | 113.17 | -2.45 | -1393.48 | -1426.56 | -1472.87 | -33.09 | -46.31 |
| 5.2 | -730.59 | 64.47 | 39.84 | -690.75 | -670.35 | -675.73 | 20.40 | -5.38 |
| 5.6 | -365.70 | 36.69 | 32.22 | -333.48 | -303.25 | -294.74 | 30.23 | 8.51 |
| 6 | -175.22 | 20.95 | 18.88 | -156.34 | -131.88 | -121.18 | 24.46 | 10.70 |
| 6.4 | -80.68 | 12.05 | 9.57 | -71.11 | -55.03 | -46.16 | 16.07 | 8.87 |
| 6.8 | -35.83 | 6.99 | 4.45 | -31.38 | -21.98 | -15.68 | 9.40 | 6.30 |
| 7.2 | -15.41 | 4.11 | 1.94 | -13.47 | -8.38 | -4.21 | 5.09 | 4.17 |
| 7.6 | -6.43 | 2.46 | 0.78 | -5.65 | -3.05 | -0.40 | 2.60 | 2.65 |

One can see in Fig. 2 that the nonadditivity of the Na_{3} trimer is dominated by the Heitler-London exchange energy. In the minimum of Na_{3} interaction energy ($4.8 \AA \AA$), the difference between the Heitler-London exchange energy and the SCF nonadditivity is less than $2.5 \mu \mathrm{E}_{\mathrm{h}}$. The gap be-

Fig. 2
The three-body terms in the Na_{3} trimer from the IMPPT calculations. The labels: disp, ind, (HL)ex, SCF, (SCF)def denote: $\varepsilon_{\text {disp }}^{(30)}, \varepsilon_{\text {ind, }}^{(30)}[2(1), 3(1)]$, Heitler-London exchange, SCF nonadditivity, and SCF deformation, respectively. $\Theta=60^{\circ}$ (a), $R=4.6 \AA$ (b)
tween the $\Delta \mathrm{E}^{\mathrm{SCF}}[3,3]$ and $\varepsilon_{\text {exch }}^{\mathrm{HL}}$ is relatively small for longer distances, but it increases up to 30% for the shorter interatomic distances (at $3.6 \AA$ Å). This gap defines the SCF-deformation nonadditivity $\Delta \mathrm{E}_{\text {def }}^{\text {SCF }}$, and may be viewed as the nonadditive effect of the induction interaction modiffed by the accompanying exchange effects. Note that the effect changes its sign at around $4.8 \AA$, from attractive at smaller R to repulsive at larger R.
The correlation nonadditivities, included in $\Delta \mathrm{E}^{(2)}$ and $\Delta \mathrm{E}^{(3)}$, are of secondary importance, but not to be neglected quantitatively. Both are similar in magnitude and both change their signs in the van der Waals minimum region from minus at small R to plus at large R. At larger $R, \Delta E^{(3)}$ agrees well with the dispersion nonadditivity, and at smaller R it is apparently affected strongly by the exchange and charge-overlap effects. Interestingly, the purely exchange nonadditivity of $\Delta \mathrm{E}^{(2)}$ is as important as $\Delta \mathrm{E}^{(3)}$.
To better understand the nature of the exchange effect, the SE and TE terms of Heitler-London exchange energy are plotted in Fig. 3 and compared with the SCF energy as a function of the interatomic distance for the equi-

Table VII

The SE and TE components of the Heitler-London exchange nonadditivity in the $\left({ }^{4} \mathrm{~A}_{2}^{\prime}\right) \mathrm{Na}_{3}$ trimer calculated via pseudodimer approach in comparison to the SCF deformation. Energy in $\mu \mathrm{E}_{\mathrm{h}}$

R, \AA	SE_part	SE_tot	TE	$\varepsilon_{\text {exch }}^{\mathrm{HL}}$	$\Delta \mathrm{E}^{\text {SCF }}$
3.2	7035.61	21106.82	-31692.69	-10585.87	-
3.6	3502.45	10507.36	-17466.55	-6959.19	-10338.26
4	1661.37	4984.12	-9289.48	-4305.37	-5375.49
4.2	1125.77	3377.32	-6690.79	-3313.47	-3851.20
4.4	755.18	2265.55	-4780.33	-2514.78	-2753.63
4.6	501.77	1505.31	-3388.12	-1882.81	-1962.94
4.8	330.40	991.20	-2382.23	-1391.03	-1393.48
5.2	139.66	418.99	-1149.58	-730.59	-690.75
5.6	57.15	171.46	-537.17	-365.70	-333.48
6	22.67	68.00	-243.22	-175.22	-156.34
6.4	8.73	26.18	-106.86	-80.68	-71.11
6.8	3.27	9.80	-45.63	-35.83	-31.38
7.2	1.19	3.58	-18.98	-15.41	-13.47
7.6	0.42	1.27	-7.71	-6.43	-5.65

Iateral-triangle geometry. All the results are collected in Table VII. The SE term represents the coupling between the exchange of two electrons originating from two monomers with the electrostatic interaction with the third monomer. There are three possibilities of such coupling, which differ in various permutation of the monomers. In the case of the equilateral trian-

Fig. 3
The SE and TE exchange contributions to the Heitler-London exchange energy compared with the SCF nonadditivity in the Na_{3} system. The R dependence is shown for the equilateral triangle ($\Theta=60^{\circ}$) (a), and the angular dependence for the NaB distances fixed at $4.6 \AA$ value (b)
gle, all three SE parts are equal. As a consequence, the total SE term, which is denoted here as SE_tot, is the SE term multiplied by 3.
The TE term represents the part of the exchange nonadditivity involving the exchange of electrons from all three monomers, coupled with electrostatic interaction. In the case of Na_{3} for studied geometries, the attractive character of the Heitler-London energy is determined by the triple exchange term. On the other hand, the SE term, which exhibits the opposite behavior, cannot be neglected. The balance between SE and TE terms creates the specific anisotropy of the Heitler-London exchange energy and can cause dramatic changes in the interaction energy from attractive to repulsive.
The angular dependence of the nonadditivity in the Na_{3} cluster was also evaluated for the isosceles-triangle geometry. Distances between atoms $\mathrm{Na}(1)-\mathrm{Na}(2)$ and $\mathrm{Na}(1)-\mathrm{Na}(3)$ were fixed at $4.6 \AA$, the distance related to the minimum energy especially of the Na_{3} cluster. The angle $\mathrm{Na}(2)-\mathrm{Na}(1)-\mathrm{Na}(3)$ was varied from 60 to 180° with the step of 15°. The results are presented in Table VIII.

Table VIII shows different interaction energy contributions. The angular dependence of nonadditivity shows that the Heitler-London exchange effects are large and important for all Θ, whereas the importance of the SCF

Table VIII
Angular dependence of various three-body components of the interaction energy of the $\left({ }^{4} \mathrm{~A}_{2}^{\prime}\right) \mathrm{Na}_{3}$ trimer. The interatomic distance was fixed at $4.6 \AA$. The number in parentheses labels Na atoms from which electrons are exchanged. The Θ angle $\mathrm{Na}(2)-\mathrm{Na}(1)-\mathrm{Na}(3)$ is varied. Energy in $\mu \mathrm{E}_{\mathrm{h}}$

Θ	SE_(1-2)	SE_(2-3)	SE_tot	TE	$\varepsilon_{\text {exch }}^{\mathrm{HL}}$	$\Delta \mathrm{E}_{\text {def }}^{\text {SCF }}$	$\varepsilon_{\text {disp }}^{(30)}$	$\Delta \mathrm{E}^{\text {SCF }}$
60	501.77	501.77	1505.31	-3388.12	-1882.81	-80.12	149.66	-1962.94
75	179.98	276.29	636.24	-1683.81	-1057.57	-18.99	92.79	-1076.56
90	8.09	144.80	160.98	-681.05	-520.07		57.20	
105	-74.90	76.88	-72.91	-127.28	-200.19	-129.68	34.29	-329.87
120	-114.63	43.41	-185.86	169.37	-16.49	-175.34	19.54	-191.83
135	-134.03	26.98	-241.09	328.71	87.62	-203.55	10.19	-115.93
150	-143.52	18.90	-268.13	413.45	145.32	-218.45	4.50	-73.132
165	-147.81	15.16	-280.45	454.79	174.34		1.43	
180	-149.02	14.07	-238.98	467.15	183.17		0.46	

deformation grows with the increasing angle. For angles Iarger than 120°, the value of the SCF deformation is similar to the total supermolecular M P3 nonadditivity.

The $\varepsilon_{\text {exch }}^{\mathrm{HL}}$ term shows a strong anisotropy determined mainly by the TE term (see Fig. 3). The change of sign of $\varepsilon_{\text {exch }}^{\mathrm{HL}}$, as well as TE and SE_(1-2), is observed at about 100° (see Fig. 3). For small angles the Heitler-London exchange energy shows a negative sign while for larger angles it is positive.

The dispersion nonadditive term is relatively small for all Θ. It barely influences the total nonadditivity.

To summarize, the geometry and energetics of the Na_{3} cluster is determined by the two-body potential of the Na_{2} dimer and attractive threebody exchange effects. The three-body nonadditive energy amounts to 65\% of the total interaction energy at the UMP3 level of theory. For all studied distances, the whole nonadditivity is attractive and considerably shortens the interatomic trimer equilibrium distance with respect to the Na_{2} dimer equilibrium distance. The minimum energy of the Na_{2} dimer is located at $5.4 \AA$ while that of the Na_{3} trimer at $4.8 \AA$. The three-body energy is dominated by the Heitler-London exchange energy and especially by its TE component. It originates from the Pauli exclusion principle imposed on the unperturbed monomers; a serious net reduction of the exchange effect is observed after attaching a third monomer. The three-body induction and dispersion effects are of secondary importance.

THE LOWEST QUARTET STATES OF THE Na $\mathbf{N B}^{\mathbf{B}}$ TRIMER

The isosceles-triangle arrangement of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer was assumed in all calculations. Three quartet states of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer were studied, derived from the $2 \mathrm{~s}_{\mathrm{B}}^{2} 2 \mathrm{p}_{\mathrm{B}}^{1} 3 \mathrm{~s}_{\mathrm{Na} 1}^{1} 3 \mathrm{~s}_{\mathrm{Na} 2}^{1}$ electronic configuration, and related to the A_{2}, B_{2}, and A_{1} symmetries. For the isosceles-triangle arrangements, the singly occupied 3 s orbitals of Na atoms form an orbital of the a_{1} and b_{2} symmetry of the trimer. The singly occupied p orbital of boron is the source of the variety states in $\mathrm{Na}_{2} \mathrm{~B}$. The A_{2} state occurs when the singly occupied p orbital is perpendicular to the $\mathrm{Na}-\mathrm{B}-\mathrm{Na}$ plane (b_{1} symmetry). The B_{2} state occurs when the singly occupied p orbital of B atom is located in the $\mathrm{Na}-\mathrm{B}-\mathrm{Na}$ plane and is perpendicular to the $\mathrm{Na}-\mathrm{Na}$ dimer axis (a_{1} symmetry). The A_{1} symmetry occurs when the p orbital lies in the plane $\mathrm{Na}-\mathrm{B}-\mathrm{Na}$, but is parallel to the $\mathrm{Na}-\mathrm{Na}$ dimer axis (b_{2} symmetry). For other geometries, $\mathrm{C}_{2 v}$ is reduced to the C_{s} symmetry. In such a case, the B_{1} state becomes the $A^{\prime \prime}$ state, whereas the A_{1} and B_{2} states give rise to two A^{\prime} states. For the collinear ar-
rangement $\mathrm{Na}-\mathrm{B}-\mathrm{Na}$, the B_{2} state transforms into the Σ state whereas the A_{1} and B_{1} states degenerate to form the Π state.

Hereafter, the labels of p orbital symmetry in the trimer will be used to describe different states of $\mathrm{Na}_{2} \mathrm{~B}$ in the text. Such a convention ensures transparent notation consistent with the $\mathrm{RG}_{2} \mathrm{~B}\left({ }^{2} \mathrm{P}\right)$ type of complex.
The supermolecular method through the UMP3(full) level of theory, IM PPT and pseudodimer approaches were applied ${ }^{33,34}$. In addition, the NaB dimer was studied at the UMP4 level of theory. All calculations were performed with the aug-cc-pVTZ basis set for B, and Gutowski's basis set for Na^{10}.

To obtain supermolecular pairwise and nonadditive energy in the $\mathrm{Na}_{2} \mathrm{~B}$, monomers and dimers should have the same orientation of the p-symmetry orbital as it is in the trimer. More specifically, if the monomer, dimer and trimer calculations are performed with the TCBS, one obtains the monomers and trimer having the orientation and symmetry shown in Fig. 1, but the dimer comes out within the Σ and Π symmetries as in Fig. 4. The orientations of the p orbital in monomers coincides with that of the trimer, due to the same symmetry of Hamiltonian within TCBS.

In the case of the A_{1} and B_{2} states, the direction of the p orbital is rotated by $\Theta / 2$ or $(\pi / 2-\Theta / 2)$ with respect to the Π and Σ states of the NaB dimer, where Θ is the angle between two $\mathrm{Na}-\mathrm{B}$ bonds. In order to have consistent alignment of the p orbital in the monomer and dimers, the dimers should be first rotated to the same orientation as in the trimer, that is, from the Σ and Π dimer adiabatic states to the A_{1} and B_{2} diabatic dimer states. Hereafter we call the energetic effect of this transformation the orientational nonadditivity. In the literature ${ }^{35-37}$ one may also find the term "matrix

Fig. 4
Orientation of the p orbital in the NaB dimer within TCBS frame of $\mathrm{Na}_{2} \mathrm{~B}$ is determined with respect to the Na atom, but also with respect to the ghost atom. The B and Na atoms are drawn with solid lines while the ghost atom is drawn with a dotted line. The solution of the Schrödinger equation gives two Π states and one Σ. The ghost removes the degeneracy of the Π state. One Π state is coplanar with the $\mathrm{Na}_{2} \mathrm{~B}$ plane while the other is perpendicular. The figures show the NaB dimer in Π-perpendicular, Π-coplanar, and Σ-coplanar states, respectively
nonadditivity". It is the change of the pair interaction energy of Na and B in the cluster caused by the reorientation of the open-shell orbital from the Π and Σ states, due to the appearance of the third monomer.

Once the orientation of the p orbital in the trimer, dimers and monomers is the same, then Eqs (2)-(5) yield the nonadditive effect that we hereafter refer to as the genuine three-body nonadditivity. It may be further dissected into the exchange, induction, dispersion, etc. nonadditivities ${ }^{18,19}$.

Nonadditivity from Supermolecular Approach

Rotation of Two-Body Interaction Potentials

The orientation of the singly occupied p orbital in the TCBS calcula tions ${ }^{18,19,28}$ of monomers is the same as in the trimer for both the A_{1} and B_{2} states. However, calculations of the NaB dimer with TCBS provide states of the $C_{\infty v}$ symmetry: one Σ state and two Π states. Two instead of one Π states arise because of TCBS which fixes the $\mathrm{Na}_{2} \mathrm{~B}$ plane in space and distinguishes between the coplanar (with the TCBS plane) Π state and perpendicular (to the TCBS plane) Π state. Let us denote the related interactions as $\mathrm{V}_{\Pi}^{\text {copl }}$ and $V_{\Pi}^{\text {perp }}$, respectively.

In order to obtain the $\mathrm{C}_{2 v}$ symmetry dimers, one should rotate the coplanar energies of the NaB dimers. In general, the interaction of two species, one of the spherical symmetry as the Na atom and one of the p symmetry as the B atom, could be expanded in terms of the isotropic part and the anisotropy of the interaction ${ }^{38-41}$

$$
\begin{equation*}
V(R, \vartheta)=V_{0}(R)+P_{2}(\cos \vartheta) \cdot V_{2}(R) \tag{6}
\end{equation*}
$$

where $\mathrm{V}_{0}, \mathrm{~V}_{2}$, and P_{2} denote, respectively, the isotropic interaction, the anisotropy of interaction, and the Legendre polynomial of the second order. The above Eq. (6) extrapolates the Π and Σ states, which correspond respectively to $\cos \vartheta$ equal to 0 and 1 , to any arbitrary orientations.

Averaging over all possible states of NaB dimer gives the value of the isotropic term:

$$
\begin{equation*}
\mathrm{V}_{0}=\frac{1}{3}\left(2 \mathrm{~V}_{\Pi}+\mathrm{V}_{\Sigma}\right) . \tag{7}
\end{equation*}
$$

The anisotropic part of interaction is

$$
\begin{equation*}
V_{2}=\frac{5}{3}\left(V_{\Sigma}-V_{\Pi}\right) \tag{8}
\end{equation*}
$$

Using the explicit expressions of the V_{0} and V_{2} components in terms of V_{Σ} and V_{Π}, the orientational dependence of interaction between the s-symmetry and p-symmetry orbitals amounts to:

$$
\begin{equation*}
V(R, \vartheta)=V_{\Pi}(R)+\left(V_{\Sigma}(R)-V_{\Pi}(R)\right) \cdot \cos ^{2} \vartheta \tag{9}
\end{equation*}
$$

where v is the angle between the p orbital and the bond axis. The angular dependence of the interaction potential from the Legendre expansion is shown in Fig. 5.

In the case of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer, it is more convenient to express the interaction energies for the A_{1} and B_{2} states of both NaB dimers by the angle Θ instead of the angle ϑ. The Θ angle is measured between the two NaB bonds; for the A_{1} and B_{2} states of the isosceles $\mathrm{Na}_{2} \mathrm{~B}$ arrangement, it strictly relates to ϑ. In the case of the A_{1} state, half of Θ is equal to the ϑ angle, and in the case of the B_{2} state the ϑ angle complements the right angle:

$$
\begin{equation*}
\vartheta_{A_{1}}=\frac{1}{2} \Theta \tag{10}
\end{equation*}
$$

Fig. 5
According to the Legendre expansion, the interaction potential of the NaB dimer may be expressed as a simple function of the isotropic potential V_{0} and the anisotropic part V_{2} for any orientation of the p orbital: $\mathrm{V}(\mathrm{R}, \vartheta)=\mathrm{V}_{0}(\mathrm{R})+\mathrm{V}_{2}(\mathrm{R}) \cdot \mathrm{P}_{2}(\cos \vartheta)$

$$
\begin{equation*}
\vartheta_{\mathrm{B}_{2}}=\frac{1}{2} \pi-\frac{1}{2} \Theta . \tag{11}
\end{equation*}
$$

Relationships between angles $\vartheta_{\mathrm{A}_{1}}, \vartheta_{\mathrm{B}_{2}}$, and Θ in isosceles trimers are explicitly showed in Fig. 6. Applying these relationships to the NaB dimer with the trimer-centered basis of the $\mathrm{Na}_{2} \mathrm{~B}$ system in isosceles geometry gives energies of the dimers with the reoriented p orbital. For example, the interaction energy of the NaB dimer in the A_{1} and B_{2} arrangements is given by ref. ${ }^{39}$

$$
\begin{align*}
& V_{A_{1}}=V_{\Sigma} \cos ^{2}(\Theta / 2)+V_{\Pi} \sin ^{2}(\Theta / 2) \tag{12}\\
& V_{B_{2}}=V_{\Sigma} \sin ^{2}(\Theta / 2)+V_{\Pi} \cos ^{2}(\Theta / 2), \tag{13}
\end{align*}
$$

where the Θ angle is the $\mathrm{Na}-\mathrm{B}-\mathrm{Na}$ angle. For the sake of the consistency of the numerical procedure, the V_{Σ} and V_{Π} terms are coplanar, $\mathrm{V}_{\Sigma}^{\text {copl }}$ and $\mathrm{V}_{\Pi}^{\text {copl }}$, in the above equations. Similarly the B_{1} state is a pure $\mathrm{V}_{\Pi}^{\text {perp }}$ perpendicular state.

We are now in a position to write down the total energies of the dimers properly "reoriented":

$$
\begin{equation*}
E_{\text {tot }}^{A_{1}}(N a B)=E_{\text {tot }}^{\Sigma, \text { copl }}(N a B) \cdot \cos ^{2}(\Theta / 2)+E_{\text {tot }}^{\Pi, \text { copl }}(N a B) \cdot \sin ^{2}(\Theta / 2) \tag{14}
\end{equation*}
$$

A_{1} symmetry

B_{2} symmetry

Fig. 6
In the isosceles arrangement of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer the orientation of the p orbital of the B atom is symmetric, so angle ϑ between the $\mathrm{B}-\mathrm{Na}$ axis and the p orbital may be simply expressed in terms of the $\mathrm{Na}-\mathrm{B}-\mathrm{Na} \Theta$ angle. The A_{1} state corresponds to $\vartheta=\Theta / 2$ while in the case of B_{1} one has $\vartheta=\pi / 2-\Theta / 2$

$$
\begin{gather*}
\mathrm{E}_{\text {tot }}^{\mathrm{B}_{1}}(\mathrm{NaB})=\mathrm{E}_{\text {tot }}^{\Pi, \text { perp }}(\mathrm{NaB}) \tag{15}\\
\mathrm{E}_{\mathrm{tot}}^{\mathrm{B}_{2}}(\mathrm{NaB})=\mathrm{E}_{\text {tot }}^{\Sigma, \mathrm{copl}}(\mathrm{NaB}) \cdot \sin ^{2}(\Theta / 2)+\mathrm{E}_{\mathrm{tot}}^{\Pi, \text { copl }}(\mathrm{NaB}) \cdot \cos ^{2}(\Theta / 2) \tag{16}
\end{gather*}
$$

These energies may be readily used in Eqs (2)-(5) to obtain genuine three-body nonadditivity. It is also of interest to derive the related twobody interaction energies in the A_{1} and B_{2} orientations of the p orbital

$$
\begin{align*}
& V_{A_{1}}=E_{\text {tot }}^{A_{1}}(N a B)-E_{\text {tot }}^{A_{1}}(B)-E_{\text {tot }}(N a) \tag{17}\\
& V_{B_{1}}=E_{\text {tot }}^{B_{1}}(N a B)-E_{\text {tot }}^{B_{1}}(B)-E_{\text {tot }}(N a) \tag{18}\\
& V_{B_{2}}=E_{\text {tot }}^{B_{2}}(N a B)-E_{\text {tot }}^{B_{2}}(B)-E_{\text {tot }}(N a) . \tag{1}
\end{align*}
$$

The values of the $V_{\Sigma}^{\text {copl }}, V_{\Pi}^{\text {copl }}$, and $V_{\Pi}^{\text {perp }}$ interaction energies of the NaB dimer are collected in Table IX. The first and the second sections describe, respectively, the coplanar Π and Σ interactions of NaB obtained by the rotation of the p orbital of the B atom from the A_{1} and B_{2} symmetries. The last section describes the perpendicular Π interaction of NaB obtained from the B_{1} symmetry of the B atom and NaB dimer.

The Orientational Nonadditivity

The most appropriate definition of the two-body orientation nonadditivity is with respect to the isotropic part of the potential V_{0}. The reference levels are introduced separately for each NaB pair (cf. ref. ${ }^{39}$). Moreover, it is convenient to introduce two reference energy levels for each NaB pair. One of them is the coplanar isotropic potential $\mathrm{V}_{0}^{\text {copl }}$, and the other is the perpendicular isotropic potential $\bigvee_{0}^{\text {perp }}$. These potentials were obtained as averages over the well separated states of the NaB dimer in the $\mathrm{Na}_{2} \mathrm{~B}$ trimer. For any arrangement of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer, the $\mathrm{A}^{\prime \prime}$ (or B_{1}) state is well separated from the others with the perpendicular p orbital of B (the $V_{\Pi}^{\text {perp }}$ potential). Similarly, both A_{0} states ($\operatorname{or} \mathrm{A}_{1}$ and B_{2}) are combinations of two coplanar
states $\left(\mathrm{V}_{\Pi}^{\text {copl }}\right.$ and $\left.\mathrm{V}_{\Sigma}^{\text {copl }}\right)$. The $\mathrm{V}_{0}^{\text {perp }}$ isotropic perpendicular potential is equal to $\mathrm{V}_{\Pi}^{\text {perp }}$, while the coplanar isotropic one $\mathrm{V}_{0}^{\text {copl }}$ is equal to $\frac{1}{2}\left(\mathrm{~V}_{\Sigma}^{\text {copl }}+\mathrm{V}_{\Pi}^{\text {copl }}\right)$.
The total orientational nonadditivities in the $\mathrm{A}_{1}, \mathrm{~B}_{1}$, and B_{2} states are the sums of contribution of nonadditivities from pair interactions $\mathrm{Na}(1)-\mathrm{B}$ and $\mathrm{Na}(2)-\mathrm{B}$:

$$
\begin{align*}
& V_{\text {NON }}^{\text {copl, } A_{1}}=V_{N O N}^{\text {copl, } A_{1}}(\mathrm{Na}(1) \mathrm{B})+V_{\mathrm{NON}}^{\text {copl, } \mathrm{A}_{1}}(\mathrm{Na}(2) \mathrm{B}) \tag{20}\\
& V_{\mathrm{NON}}^{\text {cop, } \mathrm{B}_{2}}=V_{\mathrm{NON}}^{\text {copl, } \mathrm{B}_{2}}(\mathrm{Na}(1) \mathrm{B})+\mathrm{V}_{\mathrm{NON}}^{\text {copl, } \mathrm{B}_{2}}(\mathrm{Na}(2) \mathrm{B})
\end{align*}
$$

$$
\begin{equation*}
V_{\text {NON }}^{\text {perp } B_{1}}=V_{\text {NON }}^{\text {perp, } B_{1}}(\mathrm{Na}(1) \mathrm{B})+\mathrm{V}_{\text {NON }}^{\text {perp } B_{1}}(\mathrm{Na}(2) \mathrm{B}) . \tag{22}
\end{equation*}
$$

Table IX
Interaction energies of the NaB dimer with properly oriented monomers as in the Σ and Π states of the dimer. Energy in $\mu \mathrm{E}_{\mathrm{h}}$

R, \AA A	$\mathrm{V}_{\square}^{\text {copl }}$			$\mathrm{V}_{\Sigma}^{\text {copl }}$			$\mathrm{V}_{\Pi}^{\text {perp }}$		
	SCF	MP2	M P3	SCF	MP2	MP3	SCF	M P2	M P3
4	-414.81	-2795.27	-3204.47	2129.34	1318.47	1118.79	-413.67	-2792.98	-3201.65
4.2	-247.19	-2098.37	-2428.79	1663.53	923.86	739.92	-246.51	-2096.84	-2426.64
4.4	-150.48	-1590.18	-1856.04	1279.03	619.63	453.52	-150.08	-1589.19	-1854.39
4.6	-94.32	-1212.54	-1425.75	967.99	391.46	243.89	-94.04	-1211.91	-1424.49
4.8	-61.13	-928.93	-1099.59	721.64	225.59	96.18	-60.92	-928.55	-1098.64
5	-41.01	-714.67	-851.23	530.43	109.11	-3.16	-40.81	-714.43	-850.51
5.2	-28.43	-552.20	-649.03	384.72	30.51	-61.86	-28.25	-552.08	-661.05
5.4	-20.28	-428.62	-516.38	275.55	-19.93	-102.42	-20.08	-428.53	-515.98
5.6	-14.84	-334.30	-404.92	194.98	-50.13	-120.22	-14.60	-334.23	-404.60
6	-8.42	-206.49	-252.65	94.10	-72.73	-122.77	-8.13	-206.48	-252.52
6.4	-5.04	-130.37	-161.00	43.12	-69.84	-105.26	-4.74	-130.36	-160.93
6.8	-3.08	-84.19	-104.85	18.56	-58.18	-83.21	-2.86	-84.23	-104.88
7.2	-1.95	-55.74	-69.94	7.30	-45.36	-63.09	-1.74	-55.74	-69.93
7.6	-1.25	-37.85	-47.78	2.38	-34.24	-46.90	-1.10	-37.84	-47.77

The orientational nonadditivity of the $\mathrm{Na}(1) \mathrm{B}$ and $\mathrm{Na}(2) \mathrm{B}$ interactions is defined as the difference between the interaction energy of the dimer with the p orbital rotated by ϑ_{1} and ϑ_{2} (as in Fig. 1) from the respective NaB bonds:

$$
\begin{equation*}
V_{\text {NON }}^{X, Y}(\mathrm{Na}(\mathrm{i}) \mathrm{B})=\mathrm{V}^{\mathrm{X}, \mathrm{Y}}\left(\mathrm{R}_{\mathrm{i}}, \vartheta_{\mathrm{i}}\right)-\mathrm{V}_{0}^{\mathrm{X}}(\mathrm{Na}(\mathrm{i}) \mathrm{B}), \tag{23}
\end{equation*}
$$

where $i=1,2$ and $X=$ copl, perp. Y stands for A_{1} or B_{2} for $X=c o p l$ and B_{1} for $\mathrm{Y}=$ perp. The last equation gives zero as the orientational nonadditivity for the B_{1} state. The following simple expressions are obtained for the isosceles-triangle arrangements of $\mathrm{Na}_{2} \mathrm{~B}$

$$
\begin{align*}
& V_{\mathrm{NON}}^{\text {copl, } \mathrm{A}_{1}}=+\cos \Theta \cdot\left(\mathrm{V}_{\Sigma}^{\text {copl }}-\mathrm{V}_{\Pi}^{\text {copl }}\right) \tag{24}\\
& \mathrm{V}_{\mathrm{NON}}^{\text {copl, } \mathrm{B}_{2}}=-\cos \Theta \cdot\left(\mathrm{V}_{\Sigma}^{\text {copl }}-\mathrm{V}_{\Pi}^{\text {copl }}\right), \tag{25}
\end{align*}
$$

where the angle Θ is measured between the two interatomic NaB axes in the $\mathrm{Na}_{2} \mathrm{~B}$ triangle. A detailed derivation has been given in ref. ${ }^{42}$

Since in our case all calculations were performed for the equilateral geometries of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer, one can easily show that the orientational nonadditivity is explicitly given by:

$$
\begin{align*}
& \mathrm{V}_{\text {NON }}^{\text {copl, } \mathrm{A}_{1}}=+\frac{1}{2} \mathrm{~V}_{\Sigma}^{\text {copl }}-\frac{1}{2} \mathrm{~V}_{\Pi}^{\text {copl }} \tag{26}\\
& \mathrm{V}_{\text {NON }}^{\text {copl, } \mathrm{B}_{2}}=-\frac{1}{2} \mathrm{~V}_{\Sigma}^{\text {copl }}+\frac{1}{2} \mathrm{~V}_{\Pi}^{\text {copl }} . \tag{27}
\end{align*}
$$

The values of the orientational nonadditivity of the $\mathrm{Na}_{2} \mathrm{~B}$ system for the A_{1} and B_{2} states are collected in Table X. A comparison of the orientational vs genuine nonadditivities with the isotropic part of the interaction is shown in Fig. 7.
The orientational nonadditivity for the A_{1} state has the same value as for the B_{2} state, but of the opposite sign. The formulas for the nonadditivity (Eqs (24)-(25)) show that it vanishes when V_{Σ} is equal to V_{Π}. This is intu-
itively reasonable. Additionally, the nonadditivity vanishes when Θ is the right angle. This is because for the right angle both the NaB potentials are exactly equal to the values of the reference isotropic potential.

One can see in Table XI that from the energetic point of view it is advantageous to turn into the B_{2} direction and not advantageous to turn into the A_{1} direction. The magnitude of the orientational nonadditivity is comparable with the total isotropic $\mathrm{V}_{0}^{\text {copl }}$ pairwise interaction energy of the NaB dimer. This is because the B_{2} state is closer to the Π state and the A_{1} to the Σ state.

BSSE and Its Orientational Dependence

The isotropic p-orbital orientation-independent BSSE occurs in the B_{1} state. Its values were obtained by subtraction of the TCBS energy of the B_{1} symmetry B atom and the MCBS energy of the B atom.

Table X
The interaction energy of the NaB dimer obtained within TCBS framework for the equilat-eral-triangle arrangement of $\mathrm{Na}_{2} \mathrm{~B}$. The orientation of the singly occupied p orbital of the B atom is the same as in A_{1}, B_{2}, and B_{1} symmetries of the quartet state of the $N a_{2} B$ trimer. Energy in $\mu \mathrm{E}_{\mathrm{h}}$

R, Å	A_{1}			B_{2}			B_{1}		
	SCF	MP2	MP3	SCF	MP2	MP3	SCF	MP2	MP3
4	1494.25	296.55	44.31	220.28	-1773.35	-2129.99	-413.67	-2792.98	-3201.65
4.2	1187.24	175.29	-45.12	229.10	-1349.80	-1643.75	-246.51	-2096.84	-2426.64
4.4	923.39	74.50	-116.31	205.15	-1045.05	-1286.39	-150.08	-1589.19	-1854.39
4.6	704.41	-2.13	-165.50	169.26	-818.95	-1016.36	-94.04	-1211.91	-1424.49
4.8	528.08	-55.86	-194.89	132.43	-647.48	-808.52	-60.92	-928.55	-1089.64
5	389.65	-90.22	-207.90	99.77	-515.33	-646.48	-40.81	-714.43	-850.51
5.2	283.24	-109.45	-208.66	73.06	-412.24	-502.23	-28.25	-552.08	-661.05
5.4	202.94	-117.48	-200.88	52.33	-331.07	-417.92	-20.08	-428.53	-515.98
5.6	143.34	-117.68	-187.65	36.80	-266.75	-337.49	-14.60	-334.23	-404.60
6	68.42	-104.50	-153.53	17.27	-174.72	-221.88	-8.13	-206.48	-252.52
6.4	30.77	-84.18	-118.44	7.31	-116.03	-147.81	-4.74	-130.36	-160.93
6.8	13.01	-64.11	-88.07	2.47	-78.27	-99.98	-2.86	-84.23	-104.88
7.2	5.05	-47.41	-64.26	0.30	-53.69	-68.77	-1.74	-55.74	-69.93
7.6	1.60	-34.69	-46.64	-0.47	-37.40	-48.03	-1.10	-37.84	-47.77

Table XII lists the values of BSSE for the B1 state in comparison with the values of the total interaction energy for this state. One can see that BSSE is over one order of magnitude larger at the correlated levels of theory than at the SCF level, at any interatomic distances.

Fig. 7
Comparison between the orientational and genuine parts of the nonadditivity in $\mathrm{Na}_{2} \mathrm{~B}$ at the SCF and MP3 levels of theory. $\mathrm{V}_{0}, \mathrm{~V}_{\text {NON }}$, and $\mathrm{E}[3,3]$ denote, respectively, isotropic interaction, orientational, and genuine nonadditivity. A_{1} state, $\Theta=60^{\circ}(\mathrm{a})$; B_{2} state, $\Theta=60^{\circ}$ (b)

To clarify the idea of the orientational dependence of BSSE, one may consider the difference between the "coplanar" and the "perpendicular" interaction energies of the Π state of the NaB dimer.

We also show in Table XIII the percentage values of BSSE in the A_{1} and B_{2} states. The percentage errors were calculated with respect to the Π perpendicular interaction of NaB :

$$
\begin{equation*}
\Delta(\Pi)=100 \cdot\left(V_{\Pi}^{\text {copl }}-\mathrm{V}_{\Pi}^{\text {perp }}\right) / \mathrm{V}_{\Pi}^{\text {perp }} \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\Delta\left(\text { BSSE }-\mathrm{A}_{1}\right)=100 \cdot\left(\mathrm{~V}_{\Pi}^{\text {copl }}\left(\mathrm{BSSE}-\mathrm{A}_{1}\right)-\mathrm{V}_{\Pi}^{\text {perp }}\right) / \mathrm{V}_{\Pi}^{\text {perp }} \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\Delta\left(\text { BSSE }-\mathrm{B}_{2}\right)=100 \cdot\left(\mathrm{~V}_{\Pi}^{\text {copl }}\left(\mathrm{BSSE}-\mathrm{B}_{2}\right)-\mathrm{V}_{\Pi}^{\text {perp }}\right) / \mathrm{V}_{\Pi}^{\text {perp }}, \tag{30}
\end{equation*}
$$

Table XI
Orientational nonadditivity of the $\mathrm{Na}_{2} \mathrm{~B}$ system for the A_{1} and B_{2} states. Energy in $\mu \mathrm{E}_{\mathrm{h}}$

$\mathrm{R}, \AA \AA$	SCF			M P2			MP3		
	V_{0}	$\mathrm{V}_{\text {NoN }}^{\mathrm{A}_{1}}$	$\mathrm{V}_{\text {NON }}^{\mathrm{B}_{2}}$	V_{0}	$\mathrm{V}_{\text {NON }}^{\mathrm{A}_{1}}$	$\mathrm{V}_{\text {NoN }}^{\mathrm{B}_{2}}$	V_{0}	$\mathrm{V}_{\text {NoN }}^{\mathrm{A}_{1}}$	$\mathrm{V}_{\text {NoN }}^{\mathrm{B}_{2}}$
4	857.26	1272.07	-1272.07	-738.40	2056.87	-2056.87	-1042.84	2161.63	-2161.63
4.2	708.17	955.36	-955.36	-587.25	1511.11	-1511.11	-844.44	1584.35	-1584.35
4.4	564.27	714.76	-714.76	-485.27	1104.90	-1104.90	-701.26	1154.78	-1154.78
4.6	436.84	531.15	-531.15	-410.54	802.00	-802.00	-590.93	834.82	-834.82
4.8	330.26	391.39	-391.39	-351.67	577.26	-577.26	-501.70	597.88	-597.88
5	244.71	285.72	-285.72	-302.78	411.89	-411.89	-427.19	424.04	-424.04
5.2	178.15	206.57	-206.57	-260.85	291.36	-291.36	-355.44	293.58	-293.58
5.4	127.63	147.92	-147.92	-224.27	204.34	-204.34	-309.40	206.98	-206.98
5.6	90.07	104.91	-104.91	-192.21	142.09	-142.09	-262.57	142.35	-142.35
6	42.84	51.26	-51.26	-139.61	66.88	-66.88	-187.71	64.94	-64.94
6.4	19.04	24.08	-24.08	-100.10	30.26	-30.26	-133.13	27.87	-27.87
6.8	7.74	10.82	-10.82	-71.19	13.00	-13.00	-94.03	10.82	-10.82
7.2	2.67	4.62	-4.62	-50.55	5.19	-5.19	-66.51	3.42	-3.42
7.6	0.56	1.82	-1.82	-36.05	1.81	-1.81	-47.34	0.44	-0.44

where BSSE- A_{1} and BSSE- B_{2} stand for the interaction calculated with the nonrotated B monomer in the A_{1} and B_{2} states, respectively.

$$
\begin{align*}
& V_{\Pi}^{\text {copl }}\left(\text { BSSE }-A_{1}\right)=E_{\text {tot }}^{\Pi, \text { copl }}(N a B)-E_{\text {tot }}^{A_{1}}(B)-E_{\text {tot }}(N a) \tag{31}\\
& V_{\Pi}^{\text {copl }}\left(\text { BSSE }-B_{2}\right)=E_{\text {tot }}^{\Pi, \text { copl }}(N a B)-E_{\text {tot }}^{\mathrm{B}_{2}}(B)-E_{\text {tot }}(N a)
\end{align*}
$$

It is clear from Table XIII that the orientational parts of BSSE are relatively small but not negligible. The reorientation of the open-shell monomer or dimers gives the lowest BSSE and is the appropriate procedure to obtain interaction energy with the smallest possible error.

Table XII
Basis set superposition error for the B_{1} state of the $\mathrm{Na}_{2} \mathrm{~B}$ system in comparison with the three-body interaction energy for the same state. Energies in $\mu \mathrm{E}_{\mathrm{h}}$

R, \AA A	BSSE			E[3,3]		
	SCF	UMP2	UMP3	SCF	UMP2	UMP3
4	-21.4	-754.6	-774.0	-1285.26	-1409.10	-1387.42
4.2	-19.1	-652.9	-667.8	-837.69	-795.30	-760.07
4.4	-16.9	-563.3	-574.7	-539.21	-441.49	-405.28
4.6	-15.0	-485.9	-494.8	-341.91	-238.71	-206.70
4.8	-13.2	-421.4	-429.3	-213.35	-124.39	-98.16
5	-11.7	-370.0	-377.9	-130.94	-61.51	-40.95
5.2	-10.6	-330.3	-339.1	-78.97	-28.02	-12.40
5.4	-9.9	-299.9	-310.0	-46.79	-11.02	0.62
5.6	-9.4	-276.2	-287.6	-27.13	-2.91	5.64
6	-8.9	-239.2	-252.3	-8.49	1.60	6.10
6.4	-8.2	-206.2	-219.2	-2.19	1.43	3.73
6.8	-7.0	-173.0	-184.5	-0.31	0.68	1.86
7.2	-5.5	-141.0	-150.2	0.06	0.11	0.74
7.6	-4.1	-112.5	-119.5	0.13	-0.07	0.28

Genuine Nonadditive Effects from Supermolecular Approach

In general, the structure and energy of the $\mathrm{Na}_{2} \mathrm{~B}$ complex is determined by the two-body forces. A few comments about two-body energies are thus pertinent.
Gutowski ${ }^{10}$ determined the minimum of the lowest triplet state of the Na_{2} interaction at the $\operatorname{CCSD}(\mathrm{T})$ level of theory with a large basis set. He obtained the well depth of $-809.66 \mu \mathrm{E}_{\mathrm{h}}$ at $5.129 \AA$.

The minima of the lowest triplet states of the NaB interaction were found by us at the full UMP4(SDTQ) level with aug-cc-pVTZ basis set for B atom and Gutowski's basis for the Na atoms ${ }^{10}$. The NaB dimer shows extremely strong anisotropy. Both the Σ and Π states of the dimer have a completely different character. A very deep minimum of $-27974.0 \mu \mathrm{E}_{\mathrm{h}}$ of the Π state is located at $2.5 \AA$ (see also Simons et al. ${ }^{1}$ for previous calculations of this diatom), while a very weak minimum of $-147.279 \mu \mathrm{E}_{\mathrm{h}}$ of the Σ state appears at $5.7 \AA$. This must result in a large orientational nonadditivity in the $\mathrm{Na}_{2} \mathrm{~B}$

Table XIII
Orientational part of BSSE for the NaB dimer with respect to the perpendicular state $\mathrm{V}_{\Pi}^{\text {perp }}$ calculated for monomer B in the A_{1} and B_{2} states

$\begin{gathered} \text { \% error } \\ \text { R, Å } \end{gathered}$	$\Delta(\Pi)^{\text {a }}$			$\Delta\left(\text { BSSE- }_{1}\right)^{\text {a }}$			$\Delta($ BSSE-B $))^{\text {a }}$		
	SCF	UMP2	UMP3	SCF	UMP2	UMP3	SCF	UMP2	UMP3
4	0.28	0.08	0.09	-0.18	-0.38	-0.31	0.43	0.24	0.22
4.2	0.28	0.07	0.09	-0.85	-0.59	-0.50	0.65	0.30	0.28
4.4	0.27	0.06	0.09	-2.05	-0.86	-0.75	1.04	0.37	0.37
4.6	0.29	0.05	0.09	-3.97	-1.17	-1.04	1.71	0.46	0.46
4.8	0.34	0.04	0.09	-6.66	-1.51	-1.35	2.68	0.56	0.56
5	0.48	0.03	0.09	-9.69	-1.82	-1.62	3.87	0.65	0.66
5.2	0.61	0.02	-1.82	-12.14	-2.05	-1.82	4.87	0.71	-1.82
5.4	1.01	0.02	0.08	-12.40	-2.14	-1.87	5.48	0.74	0.73
5.6	1.62	0.02	0.08	-9.52	-2.07	-1.77	5.33	0.72	0.69
6	3.46	0.01	0.05	4.77	-1.61	-1.30	3.03	0.55	0.50
6.4	6.29	0.01	0.04	19.29	-1.21	-0.89	1.96	0.41	0.35
6.8	7.80	-0.05	-0.03	17.83	-1.42	-1.07	4.45	0.41	0.32

[^1]trimer. Interestingly, the NaB interaction at the SCF level of theory turns out to be attractive for the Π state and repulsive for the Σ state.

An unusually large stabilization of the Π dimer is due to a reduction of the exchange repulsion by a perpendicular arrangement of the singly occupied p orbital, so that the attractive dispersion interaction can extend to smaller internuclear distances. This type of bonding has been reported by Breckenridge and collaborators ${ }^{43-45}$, Sohlberg and Yarkony ${ }^{2}$, and rationalized by Bililign et al. ${ }^{46}$

The genuine nonadditivity in $\mathrm{Na}_{2} \mathrm{~B}$ and the pairwise additive interaction energy were obtained from supermolecular calculations, applying Eqs (2)-(5). For the B_{1} state this was straightforward, as the NaB dimer and the trimer are related to the same, perpendicular arrangement of the p orbital (no orientational nonadditivity). To obtain the pair interactions in the A_{1} and B_{2} states, Eqs (14)-(19) were applied.

Table XIV lists supermolecular results for the $\mathrm{Na}_{2} \mathrm{~B}$ trimer in the states of the B_{1}, B_{2}, and A_{1} symmetry, respectively. All results were obtained for the equilateral triangle arrangements at the SCF, UMP2, and UMP3 levels of theory. The interatomic distance R varied from 2.4 to $7.6 \AA$.

The first three columns consist of the total interaction energy of the trimer. The next three columns describe the two-body part of the interaction energy (including the orientational nonadditivity). The last three columns show the genuine three-body energy.

Table X shows the interaction energies of the NaB dimer in the symmetry states of the trimer (including the orientational nonadditivity).

The states of the trimer can be approximately related to the states of the dimer. The B_{1} state is a purely Π state from the point of view of NaB , and thus it is the deepest. B_{2} and A_{1} correspond to a mixture of the Π and Σ states, but not with equal weight; A_{1} corresponds more to Σ while B_{2} corresponds more to Π. The ordering of states based on two-body forces only is $\mathrm{B}_{1}<\mathrm{B}_{2}<\mathrm{A}_{1}$ for the studied ranges of interatomic distances. Consequently, the equilibrium structure of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer in the B_{1} state should be linear or nearly linear to optimize the equilibrium distances of all partners. For the same reason, the minimum of the B_{2} state occurs for the triangle geometry (small Θ) with the interatomic angle limited by the Na_{2} repulsion and the genuine nonadditivity effect, while for the A_{1} state the minimum should be close to the B_{1} state minimum (i.e., it should be either linear or nearly linear).

The three-body nonadditive energy in the $\mathrm{Na}_{2} \mathrm{~B}$ trimer is a very important contribution to the interaction energy of the trimer, cf. Table XIV, and Figs 7 and 8 . The neglect of the three-body energy would cause a large er-
Table XIV
The supermolecular results calculated for equilateral-triangle arrangement of the $N a_{2} B$ trimer in the A_{1}, B_{1}, and B_{2} states. Energy in
$\mu \mathrm{E}_{\mathrm{h}}$

R	$\mathrm{E}_{\text {int }}$			E[2,3]			E[3,3]		
	SCF	MP2	MP3	SCF	MP2	MP3	SCF	M P2	MP3
B_{1} state									
2.5	-11459	-31756	-33052	16429	-18302	-21228	-27889	-13454	-11824
3	-13397	-32164	-33924	7574.5	-16994	-20312	-20972	-15169	-13611
4	1837.7	-4713.3	-6119.1	3122.7	-3304.2	-4731.7	-1285.3	-1409.1	-1387.4
4.4	1326.6	-2761.5	-3768.8	1865.9	-2320.0	-3363.5	-539.2	-441.5	-405.3
5	686.7	-1486.2	-2109.8	817.69	-1424.6	-2068.8	-130.94	-61.51	-40.95
6	178.83	-638.97	-920.67	187.32	-640.57	-926.76	-8.49	1.60	6.10
7.6	12.59	-178.08	-257.21	12.46	-178.01	-257.48	0.13	-0.07	0.28
B_{2} state									
4	5437.6	927.70	-172.56	4390.6	-1264.9	-2588.4	1047.0	2192.6	2415.8
4.4	3126.8	-166.06	-1053.9	2576.3	-1231.7	-2227.5	550.44	1065.6	1173.6
5	1302.9	-684.31	-1285.4	1098.9	-1026.4	-1660.8	204.01	342.11	375.38
6	272.97	-533.40	-818.92	238.12	-577.06	-865.5	34.86	43.65	46.58
7.6				13.72	-177.14	-258.02			
A_{1} state									
4	3528.0	-2519.3	-3957.8	6938.6	2874.9	1760.3	-3410.6	-5394.2	-5718.1
4.4	2551.5	-925.96	-1878.2	4012.8	1007.4	113.04	-1461.3	-1933.4	-1991.2
5	1244.1	-631.96	-1223.9	1678.6	-176.21	-783.59	-434.49	-455.75	-440.30
6	292.98	-467.06	-748.11	340.42	-436.62	-728.80	-47.44	-30.43	-19.31
7.6				17.85	-171.73	-255.23			

ror. For example, for the B_{1} state the genuine MP3 nonadditivity amounts to about 30% for the van der Waals region ($R=2.8 \AA$), and it rapidly decreases to only 0.5% when the interatomic distance is twice as long (see Fig. 8). For the B_{2} state almost one third of the attractive two-body interaction is cancelled by the three-body effects in the minimum region ($\mathrm{R}=$

Fig. 8
Comparison of genuine nonadditivity with the whole interaction energy and its pairwise part in $\mathrm{Na}_{2} \mathrm{~B}$. B_{1} state, SCF level, $\Theta=60^{\circ}$ (a); B_{1} state, MP3 level, $\Theta=60^{\circ}$ (b)
$5.0 \AA$). For the A_{1} state the nonadditivity is attractive and Iarger in size than the pairwise part of the interaction in the minimum region.

The nonadditive forces appear to be purely repulsive for the B_{2} state. Interestingly, the B_{1} and A_{1} states are attractive for short distances, but repulsive in a long range, with a very weak maximum at about 6.0 and $6.8 \AA$, respectively.

One can see in Table XIV that the pairwise interaction energy at the SCF level is repulsive for all states. The total interaction energy at this level is repulsive for almost all regions except for the B_{1} short-range regions. The total SCF interaction energy in the B_{1} state exhibits unusual behavior for the studied regions: a shallow maximum at $3.8 \AA$ is observed and a much deeper minimum at $2.8 \AA$. The latter minimum is due to the three-body SCF deformation that accompanies the Heitler-London exchange effect (see the next Section).

To summarize, the B_{1} state is the least repulsive and the B_{2} state the most repulsive. No minimum at the SCF level for the equilateral-triangle arrangement is observed.

The total interaction energy calculated at the correlated levels of theory has the opposite sign to that obtained at the SCF level for all distances, but the sequence of states is preserved.

The nonadditive forces reverse the order of the A_{1} and B_{2} levels for intermediate and short ranges. Within the two-body approximation, the B_{2} state is lower than A_{1} but allowing for nonadditivity reverses this order. Moreover, the minima for the A_{1} and B_{2} states change locations and depth. Allowing for the nonadditivity shortens the location of the minimum for the A_{1} state from 5.4 to less than $4.0 \AA$, and lengthens the NaB distance for the B_{2} symmetry from less than 4.0 to ca $4.8 \AA$. The minimum energy is much deeper for the A_{1} symmetry of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer and more shallow for the B_{2} symmetry.

Perturbation Method: Three-Body Exchange, Induction, and Dispersion
Genuine Nonadditive Terms from Perturbation Treatment
Perturbation calculations employed TRURL codes ${ }^{34}$, adapted to treat openshells within the UHF approximation ${ }^{47}$, including two- and three-body corrections. The program calculates the following three-body terms: the Heitler-London-exchange, the second- and third-order induction, and the third-order dispersion. The monomers are calculated with TCBS and the p
orbital is oriented as in the trimer. Therefore, one obtains only pure genuine three-body effects.

All computations were performed for the interatomic distance ranging from 2.5 to $7.6 \AA$ of the equilateral triangle geometry of $\mathrm{Na}_{2} \mathrm{~B}$. This range covers the minimum of pairwise interactions of $\left({ }^{3} \Sigma\right) \mathrm{Na}_{2}(5.2 \AA)$ and $\left({ }^{3} \Sigma\right) \mathrm{NaB}$ (5.7 \AA), and is close to the minimum of ($\left.{ }^{3} \Pi\right) \mathrm{NaB}(2.5 \AA$).

The three-body terms: Heitler-London exchange $\varepsilon_{\text {exch }}^{\mathrm{HL}}$, third-order dispersion $\varepsilon_{\text {disp }}^{(30)}$, and induction $\varepsilon_{\text {ind,r }}^{(30)}(i q-i q)$ are presented in Table XV and shown in Fig. 9. The latter term represents a part of the third-order induction term

Table XV

The IMPPT results for the equilateral-triangle arrangement of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer in the $\mathrm{A}_{1}, \mathrm{~B}_{1}$, and B_{2} symmetry states. Energy in $\mu \mathrm{E}_{\mathrm{h}}$

R, \AA	$\varepsilon_{\text {disp }}^{(30)}$	$\varepsilon_{\text {ind }, \mathrm{r}}^{(30)}(\mathrm{iq}-\mathrm{iq})$	$\varepsilon_{\text {exch }}^{\mathrm{HL}}$	$\Delta \mathrm{E}^{\text {SCF }}$	$\Delta \mathrm{E}_{\text {def }}^{\text {SCF }}$
A_{1} state					
2.5	1794.44	37399.44	-25650.64		
4	147.79	523.33	-3358.70	-3410.56	-51.86
4.4	74.91	176.07	-1702.90	-1461.30	241.60
5	27.51	48.85	-564.36	-434.49	129.86
6	5.60	9.97	-75.97	-47.44	28.53
7.6	0.59	1.03	-2.60		
B_{1} state					
2.5	1523.76	35524.95	-15840.15	-27888.68	-12048.53
4	137.11	785.26	-1372.40	-1285.26	87.14
4.4	70.39	274.91	-597.42	-539.21	58.21
5	26.26	64.37	-150.10	-130.94	19.16
6	5.50	8.63	-9.60	-8.49	1.11
7.6	0.61	0.76	0.22	0.13	-0.09
B_{2} state					
2.5	1628.11	33193.37	1532.60		
4	148.25	635.65	277.99	1046.99	769.00
4.4	76.17	219.61	180.62	550.44	369.82
5	28.42	53.56	86.78	204.01	117.24
6	5.97	8.33	19.95	34.86	14.91
7.6	0.67	0.83	1.22		

Fig. 9
The three-body nonadditive terms from the IMPPT calculation for the equilateral arrangement of $\mathrm{Na}_{2} \mathrm{~B}$. The labels: disp, ind, (HL)ex, SCF, (SCF)def denote: $\varepsilon_{\text {disp }}^{(30)}, \varepsilon_{\text {ind,r }}^{(30)}(\mathrm{iq}-\mathrm{iq})$, Heitler-London exchange, SCF nonadditivity, and SCF deformation, respectively. A_{1} state, $\Theta=60^{\circ}$ (a); B_{1} state, $\Theta=60^{\circ}(\mathrm{b})$; B_{2} state, $\Theta=60^{\circ}$ (c)
which corresponds to the electrostatic interaction of the induced moments of the Na atoms generated by the electric field of B.
A major part of the nonadditivity is exchange in nature and is located in the SCF and the Heitler-London exchange terms. All other contributions appear to be secondary.
The Heitler-London exchange nonadditivity of the $\mathrm{Na}_{2} \mathrm{~B}$ system is negative for the A_{1} and B_{1} symmetries and positive for the B_{2} symmetry. The exchange nonadditivity is in good agreement with the total supermolecular SCF nonadditivity. It has the same sign as the SCF nonadditivity, and has a comparable magnitude for all states.
The best agreement of the SCF nonadditivity is for the B_{1} state, as the difference between SCF and Heitler-London results amounts to about 10\%. Similarly, SCF non-additivity for the A_{1} state differs by a few percentage points for short-range distances, but for long-range distances it amounts to as much as half of the exchange effects. The B_{2} state SCF nonadditivity is about twice as big as the Heitler-London exchange for the studied distances.

Although the main part of the nonadditivity is of the exchange nature, the induction and dispersion terms cannot be neglected, especially for A_{1} and B_{2}, for which the correlated MP3 nonadditivity is about twice as big as the SCF nonadditivity. Moreover, the MP3 long-range interaction in B_{1} state exhibits the maximum at $6 \AA$, which cannot be explained by exchange terms, which behave monotonically.

In general, the MP3 nonadditivity is better recovered by the sum of SCF and dispersion three-body terms for smaller distances. The sum of dispersion, induction and Heitler-London exchange terms agrees better with M P3 for the long-range distances. Both models recover a shallow maximum of the interaction energy of the B_{1} state at about $6 \AA$, and a monotonic decrease in the interaction energy for the B_{2} state with increasing R.

The Exchange Nonadditivity and Pseudodimer Treatment of $\mathrm{Na}_{2} \mathrm{~B}$

In this Section decomposition of the first-order exchange energy into the single-exchange SE and triple-exchange TE components is carried out by means of the pseudodimer approach ${ }^{29,34,48}$. The electrostatic model of the SE term in $\mathrm{Na}_{2} \mathrm{~B}$ is discussed and analyzed.
The Heitler-London exchange nonadditivity was partitioned into the TE term and various SE components. The total SE term, which is denoted here as SE_tot, is divided into three parts. Each of the SE terms represents the exchange of electrons between the various two monomers in the trimer. The symbol in the bracket labels monomers in which electrons are exchanged.

For example, SE_(Na..Na) represents the exchange of electrons between two Na atoms coupled with the electrostatic interaction with the B atom ${ }^{48,49}$.

Detailed information about partial and total SE terms, the TE term, and the total Heitler-London exchange nonadditivity is presented in Table XVI.

The TE term is negative for all studied distances and for each symmetry. For the B_{2} symmetry, it decreases most rapidly, with the highest negative value for R of $2.5 \AA$, and the lowest absolute value for $R=7.6 \AA$.

Table XVI
The SE and TE contributions to the Heitler-London nonadditivity for the equilateral-triangle arrangement of $\mathrm{Na}_{2} \mathrm{~B}$ in the $\mathrm{A}_{1}, \mathrm{~B}_{1}$, and B_{2} states

R, \AA	$\varepsilon_{\text {exch }}^{\mathrm{HL}}$	SE_(B..Na)	SE_(Na..Na) c	SE_tot	TE
A_{1} state					
2.5	-25650.64	10377.91	11833.42	32589.25	-58239.88
4	-3358.70	342.53	321.13	1006.19	-4364.89
4.4	-1702.90	124.08	38.48	286.63	-1989.53
5	-564.36	25.38	-46.23	4.53	-568.88
6	-75.97	1.56	-20.32	-17.20	-58.76
7.6	-2.60	0.01	-1.56	-1.54	-1.06
B_{1} state					
2.5	-15840.15	3130.50	14779.79	21040.80	-36880.94
4	-1372.40	34.20	1056.00	1124.39	-2496.79
4.4	-597.42	10.19	474.84	495.21	-1092.63
5	-150.10	1.67	137.83	141.17	-291.27
6	-9.60	0.07	16.83	16.98	-26.57
7.6	0.22	0.00	0.62	0.62	-0.40
B_{2} state					
2.5	1532.61	444.40	18333.19	19154.96	-17622.35
4	277.99	-76.45	1487.59	1336.01	-1058.02
4.4	180.62	-28.74	699.62	642.43	-461.81
5	86.78	-5.79	218.59	207.02	-120.24
6	19.95	-0.33	30.37	29.71	-9.76
7.6	1.22	0.00	1.32	1.31	-0.09

The ordering of states is $B_{2}>B_{1}>A_{1}$. The SE_($\mathrm{Na} . . \mathrm{Na}$) exchange effect is positive for the B_{1} and B_{2} symmetry but negative at the long range of the A_{1} symmetry. For the B_{2} symmetry, it is about twice as repulsive as for the B_{1} symmetry.

Except for the short range of the A_{1} state, the anisotropy of SE_(Na..Na) agrees qualitatively well with the model of the exchange quadrupole interacting with a third species. In our case, such an exchange quadrupole interacts with the permanent quadrupole located at the B center. This permanent quadrupole moment on B is due to the axial symmetry of the electronic density of the singly-occupied p orbital centered at the B atom.

The plausible explanation of a dramatic change of the sign of SE_($\mathrm{Na} . . \mathrm{Na}$) for the A_{1} symmetry for distances shorter than $4.6 \AA$ is a significant increase of higher DE terms. These terms are proportional to the fourth power of the overlap integral and could be of the opposite sign to the SE term:

$$
\begin{equation*}
\mathrm{SE}=-\left\langle\mathrm{V} \mathrm{c}_{2}\right\rangle+\left\langle\mathrm{c}_{2}\right\rangle\langle\mathrm{V}\rangle \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
D E \cong-S E \cdot\left\langle c_{2}\right\rangle, \tag{34}
\end{equation*}
$$

where the C_{2} is operator of the exchange of electrons and V is electrostatic Coulomb operator. An additional argument is that the change of sign occurs for distances smaller than the van der Waals radius of the Na atom (equal to the equilibrium distance of the Na-Na potential), where the exchanges of inner electrons should be more significant.

The term SE_(Na..B) exhibits interesting orientational anisotropy (Fig. 10). It may be interpreted in terms of exchange and overlapping of Na and B half-filled orbitals. For the B_{1} state, the overlap integral of the boron p orbital with the s orbital of any of the Na atoms vanishes due to the Π symmetry. This results in a considerable decrease in the exchange effect SE_(Na..B) with respect to other symmetry states. Thus the SE_(Na..B) term in the case of the B_{1} state is over one order of magnitude lower than for the A_{1} state. The SE_(Na..B) term of the B_{1} state may be thought of as an indicator of how extensive the inner electron cloud of boron is (the rapid increase in SE _($\mathrm{Na} . . \mathrm{B}$) begins with penetration of the inner shell of B by the Na electron cloud).

The absolute values of the Na .. B exchanges in the B_{2} state are also much lower than for the A_{1} state. This is caused by a greater similarity of that state to the Π symmetry rather than to the Σ symmetry. M oreover, the SE_(Na..B) term for each state is much lower than the relevant SE_(Na..Na) term.

Electrostatic Model of SE

Historically, the Jansen effective-electron model of exchange effects was the first model to explain the exchange nonadditivity ${ }^{25}$. The idea is based on the electrostatic interaction of an exchange quadrupole located at the center of mass of two atoms with a permanent multipole located on the third atom (see also ref. ${ }^{26}$ for extensions of this model).

An electrostatic model involving the interaction of the exchange quadrupole on Na_{2} with the quadrupole moment of B predicts attractive exchange energy for A_{1} and repulsive for B_{1} and B_{2}. Moreover, the repulsive effect for B_{2} should be greater than the repulsive effect for B_{1}. Figure 11 shows the orientational dependence between quadrupole on B and the

Fig. 10
The SE_(Na..B) exchange terms for the A_{1}, B_{1}, and B_{2} symmetry states of $\mathrm{Na}_{2} \mathrm{~B} . \Theta=60^{\circ}$

A_{1} symmetry

B_{2} symmetry

B_{1} symmetry

Fig. 11
The SE_(Na..Na) term could be intuitively understood as the electrostatic interaction energy between a permanent quadrupole located at the B atom with the exchange quadrupole in the middle of the Na_{2} dimer
exchange quadrupole on Na_{2}. Such a model qualitatively explains the behavior of the SE_(Na-Na) term (see Table XVI) with respect to the electronic state.

SUMMARY AND CONCLUSIONS

The $\mathrm{Na}_{2} \mathrm{~B}, \mathrm{Na}_{3}$ and H_{3} trimers in the lowest quartet states were studied by ab initio methods, using both the supermolecular approach and the intermolecular Møller-Plesset perturbation theory. Partitioning of the nonadditive contribution into the orientational two-body part and the genuine three-body part was proposed.

The lowest quartet state of the Na_{3} trimer and all the three lowest quartet states of the $\mathrm{Na}_{2} \mathrm{~B}$ trimer were found to be bound. The geometries of these clusters are essentially determined by two-body forces. Thus, the sodium trimer is an equilateral triangle. By way of contrast, the $\mathrm{Na}_{2} \mathrm{~B}$ trimer is either (almost) collinear (for the quartet states related to the B_{1} and B_{2} symmetries of the $2 p$ boron orbital) or triangular (for the quartet state related to the A_{1} symmetry of the $2 p$ boron orbital). This diversity results from the orientational nonadditivity, and is due to the interplay between the Π and Σ states of the NaB moieties. The former state is strongly bound with the bond length close to $2.5 \AA$, whereas the latter state reveals a typically weak van der Waals bond with the long equilibrium distance of $5.7 \AA$. As a consequence, the lowest quartet state of $\mathrm{Na}_{2} \mathrm{~B}$ is collinear, the p-symmetry singly occupied orbital being perpendicular to the $\mathrm{Na}_{2} \mathrm{~B}$ triangle (B_{1} symmetry).

In the title metal trimers, in the region of the van der Waals minima, the genuine nonadditivity is very important, and amounts to 30% in $\mathrm{Na}_{2} \mathrm{~B}$, and up to 70% in Na_{3}. The leading nonadditive term is the triple-exchange Heitler-London exchange term. For triangular arrangements it considerably enhances the overall stabilization. The single-exchange term and the SCF deformation play only a secondary role. The dispersion nonadditivity is negligible.

The isotropic part of BSSE is large and must be corrected by the counterpoise method. The anisotropic contribution to BSSE is practically negligible.

[^2]
REFERENCES

1. Boldyrev A. I., Gonzales N., Simons J.: J. Phys. Chem. 1994, 98, 9931.
2. Sohlberg K., Yarkony D. R.: J. Phys. Chem. 1997, 101, 3166.
3. Boatz J. M., Fajardo M. E.: J. Chem. Phys. 1994, 101, 3472.
4. Kiljunen T., Eloranta J., Ahokas J, Kunttu H.: J. Chem. Phys. 2001, 114, 7144.
5. Kiljunen T., Eloranta J., Ahokas J., Kunttu H.: J. Chem. Phys. 2001, 114, 7157.
6. Snyder J. A., Jaffe J. E., Gutowski M., Lin Z., Hess A. C.: J. Chem. Phys. 2000, 112, 3014.
7. Feurestein B., Grum-Grzhimailo A. N., Bartschat K., Mehlhorn W.: J. Phys. B: At., Mol. Opt. Phys. 1999, 32, 3727.
8. Barrios R., Skurski P., Rak J., Gutowski M.: J. Chem. Phys. 2000, 113, 8961.
9. Jagielska A., Moszyński R., Piela L.: J. Chem. Phys. 1999, 110, 947.
10. Gutowski M.: J. Chem. Phys. 1999, 110, 4695.
11. Higgins J., Hollebeek T., Reho J., Ho T.-S., Lehmann K. K., Rabitz H., Scoles G., Gutowski M.: J. Chem. Phys. 2000, 112, 5751.
12. Yang X., Hwang E., Dagdigian P., Yang M., Alexander M. H.: J. Chem. Phys. 1995, 103, 2779.
13. Yang X., Hwang E., Dagdigian P.: J. Chem. Phys. 1996, 104, 8165.
14. Yang X., Hwang E., Dagdigian P.: J. Chem. Phys. 1996, 104, 599.
15. Yang X., Dagdigian P.: J. Chem. Phys. 1997, 106, 6596.
16. Alexander M. H., Walton A. R., Yang M., Yang X., Hwang E., Dagdigian P.: J. Chem. Phys. 1997, 106, 6320.
17. Krumrine J. R., Alexander M. H., Yang X., Dagdigian P.: J. Chem. Phys. 2000, 112, 5037.
18. Szczęśniak M. M., Chałasiński G. in: Molecular Interactions (S. Scheiner, Ed.), p. 45. Wiley, Chichester 1997.
19. Chałasiński G., Szczęśniak M. M.: Chem. Rev. (Washington, D. C.) 1994, 94, 1723.
20. Jeziorski B., Moszyński R., Szalewicz K.: Chem. Rev. (Washington, D. C.) 1994, 94, 1887.
21. Alonso J., Lopez M. in: Theory of Atomic and Molecular Clusters (J. Jellinek, Ed.). Springer-Verlag, Berlin-Heidelberg 1999.
22. Tang K. T., Norbeck J. M., Certain P. R.: J. Chem. Phys. 1976, 64, 3063.
23. Korona T., Moszyński R., Jeziorski B.: J. Chem. Phys. 1996, 105, 8178.
24. Kleinkathöfer U., Sachse T. I., Tang K. T., Toennies J. P., Yiu C. L.: J. Chem. Phys. 2000, 113, 984.
25. Jansen L.: Phys. Rev. 1962, 125, 1798.
26. Wheatley R. J.: Mol. Phys. 1995, 84, 899.
27. Kleinkathöfer U., Tang K. T., Toennies J. P., Yiu C. L.: J. Chem. Phys. 1999, 111, 3377.
28. Chałasiński G., Szczęśniak M. M.: Chem. Rev. 2000, 100, 4227.
29. Chałasiński G., Rak J., Szczęśniak M. M., Cybulski S. M.: J. Chem. Phys. 1997, 106, 3301.
30. Woon D. E., Dunning T. H.: J. Chem. Phys. 1994, 100, 2975.
31. Dunning T. H.: J. Chem. Phys. 1989, 90, 1007.
32. Kendall R. A., Dunning T. H., Harrison R. J.: J. Chem. Phys. 1992, 96, 6796.
33. Frisch M. J., Trucks G. W., Schlegel H. B. et al.: GAUSSIAN 98, Revision A.7. Gaussian, Inc., Pittsburgh (PA) 1998.
34. Cybulski S. M.: TRURL-94 Package. Rochester (MI) 1994.
35. Yourshaw I., Zhao Y., Neumark D. M.: J. Chem. Phys. 1996, 105, 351.
36. Sando K. M., Erickson G. J., Binning R. C., Jr.: J. Phys. B: At., Mol. Opt. Phys. 1979, 12, 2697.
37. Erickson G. J., Sando K. M.: Phys. Rev. A: At., Mol., Opt. Phys. 1980, 22, 1500.
38. Aquilanti V., Liuti G., Pirani F., Vecchiocattivi F.: J. Chem. Soc., Farraday Trans. 2 1989, 85, 955.
39. Naumkin F. Y., Knowles P. J.: J. Chem. Phys. 1995, 103, 3392.
40. Danilychev A. V., Apkarian V. A.: J. Chem. Phys. 1994, 100, 5556.
41. Jakowski J.: Ph.D. Thesis. Warsaw 2002.
42. Reid R. H. G.: J. Phys. B: At., Mol. Opt. Phys. 1973, 6, 2018.
43. Massick S., Breckenridge W. H.: J. Chem. Phys. 1996, 104, 7784.
44. Massick S., Breckenridge W. H.: J. Chem. Phys. 1996, 105, 6154.
45. Duval M.-C., D'Azy O. B., Breckenridge W. H., Jouvet C.: J. Chem. Phys. 1986, 85, 6324.
46. Bililign S., Gutowski M., Simons J., Breckenridge W. H.: J. Chem. Phys. 1984, 100, 8212.
47. Cybulski S. M.: Unpublished results.
48. Jakowski J., Chałasiński G., Szczęśniak M. M., Cybulski S. M.: Chem. Phys. 1998, 239, 573.
49. Cooper A. R., Hutson J. M.: J. Chem. Phys. 1993, 98, 5337.
50. Stone A. J.: The Theory of Intermolecular Forces. Clarendon Press, Oxford 1996.
51. Stone A. J., Alderton M.: Mol. Phys. 1985, 56, 1047.
52. Chałasiński G., Szczęśniak M. M., Cybulski S. M.: J. Chem. Phys. 1990, 92, 2481.
53. Chałasiński G., Cybulski S. M., Szczęśniak M. M., Scheiner S.: J. Chem. Phys. 1989, 91, 7048.

[^0]: + Presently at Chemistry Department, University of Utah, Salt Lake City, UT 84112, U.S.A. ++Also at Department of Chemistry, Oakland University, Rochester, MI 48309, U.S.A.

[^1]: ${ }^{\text {a }}$ For definitions, see Eqs (28)-(30).

[^2]: M. M. Szczęśniak and G. Chałasiński thank the National Science Foundation (grant No. CHE-0078533) for support. International collaboration was supported by NATO through the Linkage Grant CRG.LG 974215. J. Jakowski and G. Chałasiński acknowledge support by the Polish Committee for Scientific Research KBN (grant 3 T09A 112 18).

