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Dedicated to Professors Petr Čársky, Ivan Hubač and Miroslav Urban:
“In the mustardseed sun,
By full tilt river and switchback sea
Where the cormorants scud,
In their house on stilts high among beaks
And palavers of birds
This sandgrain day in the bent bay’s grave
They celebrate and spurn
their driftwood sixtieth wind turned age;
herons spire and spear.”

(Dylan Thomas)

The Na2B, Na3, and H3 trimers in the lowest quartet states were studied by ab initio meth-
ods, using both the supermolecular approach and the intermolecular Møller–Plesset pertur-
bation theory. Partitioning of the nonadditive contribution into the orientational two-body
part and the genuine three-body part was proposed. The lowest quartet state of the Na3
trimer and all the three lowest quartet states of the Na2B trimer are bound, and the forms of
these clusters are essentially determined by two-body forces. In the case of the Na2B trimer
the orientational two-body nonadditivity proved to be crucial. In addition, in the title metal
trimers, in the region of the van der Waals minima, the genuine nonadditivity is very im-
portant, and amounts to 30% in Na2B and up to 70% in Na3. The leading nonadditive term
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is the triple-exchange Heitler–London exchange term. For triangular arrangements it consid-
erably enhances the total stabilization. The single-exchange term and the SCF deformation
play only a secondary role. The dispersion nonadditivity is negligible. The isotropic part of
the basis set superposition error (BSSE) is large and must be corrected by the counterpoise
method. The anisotropic contribution to BSSE is practically negligible.
Keywords: Perturbation theory, Counterpoise method; Sodium; Hydrogen; Trimers; Ab initio
calculations; Clusters.

Recently, increasing experimental and theoretical efforts have been devoted
to study the interaction of metal atoms1–9. The alkali metal complexes have
been extensively studied by Gutowski and co-workers6,8,10,11. Boron, which
is a prototype of the IIIA group, has been studied by Alexander, Dagdigian
and their collaborators12–17.

Our interest in the three-body forces in the quartet state neutral trimers
stems from the fact that recent theoretical and experimental results for
Na3

10,11 suggested a critical role for the nonadditive forces in stabilizing the
trimer. According to Higgins et al.11, the ′A 2 Na3 potential energy surface is
characterized by a D3h symmetry minimum of –850 cm–1 (relative to the
three ground state 2S Na atom dissociation limit) with the bond distance of
4.406 Å. This bond distance differs by about 0.8 Å from the value of 5.2 Å
found for the sodium triplet dimer. The three-body effect thus amounts to
–694 cm–1, and accounts for almost 80% of the well depth of the trimer!
The authors stipulated that “this large three-body contribution is caused by
the decreased overlap repulsion of the electrons in the trimer which is due
to the highly deformable valence electron shells of the interacting sodium
atoms”. In the language of the symmetry adapted perturbation theory
(SAPT) of intermolecular interactions18–20, this is the exchange non-
additivity which is responsible for the huge extra stabilization and sizeable
shrinking of the trimer. There are several exchange nonadditive mechanisms
which can produce three-body contributions of a different character. It is of
great interest to find out what mechanism dominates the total exchange
nonadditive effect.

The striking behavior of the quartet state of Na3 motivated us to study
another candidate likely to reveal an important three-body effect, the yet
undiscovered Na2B trimer. The quartet state Na2B trimer with the valence
2s 2p 3s 3sB

2
B
1

Na1
1

Na2
1 electron configuration represents a simple model to study

the anisotropy of the three-body exchange terms and other nonadditive
contributions originating from a singly occupied p-symmetry orbital of bo-
ron. It is also the simplest model of a metallic cluster with an impurity.
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Such clusters have recently been studied by several groups, as amply docu-
mented by Alonso and Lopez21.

The interaction of two (2S) Na and (2P) B in the isosceles triangle form
leads to three different orientations of the singly occupied p orbital in the
Na2B trimer: a1, b1, and b2 of the C2v point group symmetry (Fig. 1). The 3s
orbitals of the two Na atoms generate two singly occupied molecular orbitals,
a1 and b2. As a consequence of three possible orientations of the p orbital,
three different states of the Na2B arise: B2, A2, and A1, which relate respec-
tively to a1, b1, and b2 orientations of p orbital.

In the supermolecular approach, the interaction energy of the trimer is
calculated as the difference between the energy of the complex and the
monomer energies

Eint(ABC)= E(ABC) – E(A) – E(B) – E(C) , (1)

where E(ABC) is the trimer energy, and E(A), E(B), and E(C) are monomer
energies. Eint(ABC) may be expressed as the sum of two-body (pair) interac-
tions and a three-body nonadditive effect:

Eint(ABC) = E[2,3] + E[3,3] , (2)

where

E[2,3] = Eint(AB) + Eint(BC) + Eint(AC) (3)

Eint(XY) = E(XY) – E(X) – E(Y) (4)
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FIG. 1
Orientation of the p singly occupied orbital of the B atom in the Na2B-like trimers for isosceles
geometries (the C2v point group). In the B1 symmetry the p orbital is perpendicular to the
Na2B plane

A1 symmetry B2 symmetry B1 symmetry



and the three-body part is defined recursively

E[3,3] = Eint(ABC) – E[2,3] . (5)

Equations which include subtractions of the energies of monomers, dimers,
and the trimer require consistent evaluation:

1. The energies of monomers, dimers, and the trimer should be calculated
at the same level of theory. In particular, the method must be size consis-
tent. This condition is fulfilled if one uses unrestricted HF and MP perturba-
tion theory.

2. The energies of monomers, dimers, and the trimer, should be calcu-
lated with the same basis set of the whole trimer, a trimer centered basis set
(TCBS)18.

3. In the case of trimers containing p-symmetry species, the monomer
and dimer fragments should have the same orientation of the p-symmetry
orbital as it is in the trimer. (The monomers have the orientation defined
with respect to the ghost centers in TCBS.)

The first two conditions are well known and easily fulfilled. However, the
third condition poses a problem as the orientation of the p-symmetry or-
bital in the trimer differs from that in the free dimers.

This paper is divided into two parts: the first deals with the H3 and Na3
trimers, and the second with the Na2B trimer. The trimers were studied by
the unrestricted Møller–Plesset (UMPn) perturbation theory within both the
supermolecular and intermolecular perturbation frameworks. Including the
hydrogen trimer in its quartet state is important because this trimer has
served as a benchmark system for several decades, and serves as the sim-
plest model for the treatment of the nonadditive interactions in van der
Waals clusters22–27.

The main part of this work is devoted to Na2B which, compared with the
other two trimers, exhibits a variety of novel features. First, calculations of
the nonadditivity using the supermolecular approach are presented describ-
ing the following issues: the rotation of dimer potentials, the orientational
nonadditivity, and the evaluation and analysis of the genuine non-
additivity. Next, perturbation calculations of the genuine nonadditivity are
reported. The decomposition of first-order exchange energy is performed
using the pseudodimer approach. The role and nature of three-body single-
exchange (SE) and triple-exchange (TE) terms are analyzed and discussed.
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For details and notation of the perturbation theory of the many-body ef-
fects and the pseudodimer approach, the reader is referred to our previous
papers18,19,28,29.

QUARTET STATE TRIMERS CONSISTING OF s-SYMMETRY MONOMERS

H3 Trimer

The hydrogen trimer in its quartet state 4 ′A 2 has served as a benchmark sys-
tem and the simplest model for the treatment of nonadditive interactions
in van der Waals clusters22–27. To compare our results with previous theo-
retical studies, we performed some calculations for the triangle arrange-
ments of Korona et al.23 with their basis set. The calculations were
performed for selected isosceles triangle arrangements of H3. The results
were obtained with the aug-cc-pVTZ basis set of Dunning et al.30–32, unless
otherwise stated. The B126 basis set was used for comparison with ref.23

The MP4 supermolecular and pseudodimer results are presented in Tables
I and II, respectively. The partitioning of the Heitler–London exchange
nonadditivity using the pseudodimer approach was proven to be robust
enough for the equilateral-triangle rare gas trimers. Tables III and IV pres-
ent a comparison with results of Korona et al.

The pairwise interaction energy as well as the whole interaction energy of
the H3 trimer are repulsive for all distances and levels of theory under con-
sideration (see Table I). However, the correlation corrections to both the
two-body and the whole interaction energy reduce the repulsion. In con-
trast to the pairwise energy, the three-body nonadditivity is attractive for
all distances and levels of theory. The percentage value of the nonadditive
energy amounts to about 20% of the total interaction energy for short-
range distances.

The three-body nonadditivity is determined by the Heitler–London ex-
change nonadditivity (see Table II), with the leading TE term. The TE term
is attractive for the triangle geometry and repulsive for the linear arrange-
ments of H3. The SE term is of the opposite sign to that of the TE term. This
behavior has also been observed for other trimers (e.g. rare gas trimers19).

The SE term and the SCF-deformation (∆Edef
SCF ) term are of secondary im-

portance. The SCF deformation exhibits a repulsive character for the small-
est distances and angles. An interesting observation is that ∆Edef

SCF switches
from attractive for R > 3 Å to repulsive for R < 3 Å. This is in agreement with
the previous findings for rare gas trimers52 as well as for the HCl and HF cy-
clic trimers53. This suggests:
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TABLE II
The SE and TE contributions to the Heitler–London exchange nonadditivity for the equilat-
eral arrangement of (4 ′A2)H3 trimer. The SE_part denotes partial SE term between only two H
atoms, while the SE_tot denotes sum of all SE_part terms. Energy in µEh

R, Å SE_part SE_tot TE εexch
HL ∆ESCF[3,3] ∆Edef

SCF

0.8 32999 98997 –333384 –234388 –86560 147828

1.4 5060 15179 –56663 –41484 –30581 10903

2 489.21 1467.62 –7277.05 –5809.43 –5114.39 695.04

2.6 35.61 106.82 –729.58 –622.76 –603.03 19.73

3 5.56 16.68 –140.08 –123.40 –124.60 –1.20

3.4 0.81 2.44 –24.97 –22.53 –23.40 –0.87

TABLE I
The supermolecular results for the interaction energy in the (4 ′A2)H3 trimer for the equilat-
eral arrangement. Energy in µEh

R, Å SCF MP2 MP3 MP4(SDTQ) %

Eint(total) 0.8 493706.60 481262.16 478385.76 477579.29

1.4 112448.09 107169.21 105669.76 105158.05

2 25798.15 23840.03 23208.66 22976.73

2.6 5278.37 4548.01 4294.65 4198.33

3.4 518.76 325.43 252.95 224.28

Eint(2-body) 0.8 580266.36 568317.93 565210.92 564295.66

1.4 143029.07 137960.30 136449.85 135932.34

2 30912.54 28929.69 28279.13 28041.29

2.6 5881.40 5132.49 4870.02 4770.17

3.4 542.16 346.72 273.00 243.77

Eint(3-body) 0.8 –86559.76 –87055.77 –86825.16 –86716.37 –15.4

1.4 –30580.98 30791.09 –30780.09 –30774.29 –22.6

2 –5114.39 –5089.66 –5070.48 –5064.57 –18.1

2.6 –603.03 –584.48 –575.36 –571.84 –12.0

3.4 –23.40 –21.30 –20.05 –19.49 –8.0



1. the same nature of ∆Edef
SCF in these complexes;

2. that there are at least two physically different mechanisms contribut-
ing to this correction, one prevailing at small R and the other at large R.

∆E(2) and ∆E(3) are smaller by an order of magnitude than the SCF non-
additivity for all distances (see Tables III and IV). One can also note that
∆E(3) is smaller than the ∆E(2) term for almost all distances. This trend is re-
versed at large distances (because ∆E(3) includes the long-range three-body
dispersion term, whereas ∆E(2) vanishes exponentially).

A comment on the decomposition of the ∆E(2) term should be made. The
H3 system has no intramonomer correlation effects and thus this term in-
cludes three components: the exchange-dispersion, the induction-dispersion,
and the exchange-induction-dispersion18. The first two corrections have
been calculated by Korona et al.23 The exchange-dispersion, which is repul-
sive, prevails at large R and reasonably accounts for the whole second-order
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TABLE III
Comparison of some three-body SAPT contributions calculated by Korona23 with Heitler–
London and supermolecular components for equilateral arrangement of the (4 ′A2)H3 trimer
for various interatomic distances. Energy in µEh and interatomic distance in bohrs

θ = 60 R, Å 4 6 7 8 10

Korona Eexch
( )1 [3,3] –3832.0532 –58.9677 –5.8820 –0.5334 –0.0036

(B126) Edisp
( )3 82.5326 3.7533 0.9609 0.2807 0.0349

Eind -disp
( )2 –252.4366 –3.4321 –0.3590 –0.0371 –0.0004

Eexch -disp
( )2 119.8594 5.7741 1.0202 0.1567 0.0029

Eint[3,3] –3687.5043 –50.7339 –4.0653 –0.1160 0.0388

Present SE_part 298.6851 2.3843 0.1792 0.0126 0.0001

(B126) SE_tot 896.0552 7.1528 0.5375 0.0377 0.0002

TE –4728.1061 –66.1205 –6.4194 –0.5711 –0.0038

εexch
HL –3832.0509 –58.9677 –5.8820 –0.5335 –0.0036

∆Edef
SCF 382.3053 –1.4455 –0.3292 –0.0395 –0.0007

∆E ( )2 29.0472 4.3117 0.7886 0.1192 0.0020

∆E ( )3 17.9448 2.3856 0.5595 0.1326 0.0123

∆E ( )4 5.7120 0.9768 0.2541 0.0699 0.0085

MP4(SDTQ) –3397.0416 –52.7390 –4.6090 –0.2513 0.0185



term. At small R, however, it appears (cf. Table III) that it is the induction-
dispersion accompanied by exchange that dominates.

The total supermolecular and SAPT three-body energies of Korona et al.23

agree remarkably well, although some small discrepancies are intriguing. A
detailed comparison with the calculations of Korona et al. shows that the
first-order exchange energies agree exactly. The second-order UMP three-
body effect has a complex structure so it is not possible to compare it pre-
cisely with the SAPT energies. However, the third-order UMP energy is usu-
ally accurately reproduced by the third-order dispersion. This is not the
case here, as even for R = 8 and 10 Å, these terms markedly differ by a factor
of two.
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TABLE IV
Comparison of some SAPT nonadditive results with supermolecular and pseudodimer results
for various isosceles geometries. Two H–H radii are fixed at R = 6 bohr and the angle be-
tween them is varied. Energy in µEh

R = 6 Θ 30 60 90 120 150 180

Korona Eexch
( )1 [3,3] –374.7375 –58.9651 –7.4002 –0.3419 0.8839 1.0975

(B81) Edisp
( )3 16.7355 3.6059 0.9746 0.0517 –0.3072 –0.4029

Eind -disp
( )2 –20.3788 –3.2955 –0.6639 –0.2984 –0.2358 –0.2302

Eexch -disp
( )2 33.8587 5.6679 1.6322 0.8020 0.6703 0.6672

Eint[3,3] –316.9620 –50.7872 –4.7160 0.6867 1.3820 1.4803

Present SE_(H1..H2) 10.5560 2.3843 0.1820 –0.0784 –0.1211 –0.1285

(B126) SE_(H1..H3) 10.5560 2.3843 0.1820 –0.0784 –0.1211 –0.1285

SE_(H2..H3) 19.3464 2.3843 0.2426 0.0375 0.0113 0.0075

SE_tot 40.4584 7.1528 0.6067 –0.1193 –0.2309 –0.2495

TE –415.2142 –66.1205 –8.0082 –0.2235 1.1140 1.3461

εexch
HL –374.7558 –58.9677 –7.4015 –0.3428 0.8831 1.0966

∆Edef
SCF 10.7840 –1.4455 –0.3017 0.2577 0.4919 0.5609

∆E ( )2 19.0822 4.3117 1.2832 0.4219 0.1690 0.1181

∆E ( )3 9.1699 2.3856 0.7804 0.2613 0.0899 0.0518

∆E ( )4 3.5045 0.9768 0.3338 0.0855 –0.0118 –0.0371

MP4(SDTQ) –332.2152 –52.7390 –5.3059 0.6836 1.6221 1.7903



Na3 Trimer

The supermolecular UMPn and IMPPT calculations were performed for the
Na trimer in the high-spin 4 ′A 2 state. We essentially limited our study to the
equilateral-triangle configuration, its side ranging from 2.5 to 7.6 Å. Some
calculations were performed for two bonds fixed at 4.6 Å and for varied Θ
angle between them, in order to expose the anisotropy of the nonadditive
terms.

Table V collects the supermolecular results for the trimer, while Table VII
provides a comparison of the supermolecular and perturbational energies.
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TABLE V
The supermolecular two-body and three-body components of the total energy of the
(4 ′A2)Na3 trimer for the equilateral arrangement. Energy in µEh

R, Å 3.6 4 4.4 4.6 4.8 5 5.2

Eint SCF 11601.62 6574.60 3744.21 2873.61 2215.27 1711.78 1322.74

MP2 5463.67 1125.13 –359.48 –693.3 –882.54 –975.5 –1003.51

MP3 3020 –1002.8 –2037.99 –2171.06 –2180.15 –2112.58 –1998.07

E[2,3] SCF 21939.88 11851.09 6497.84 4836.55 3608.75 2695.87 2013.49

MP2 15550.2 6834.23 2562.23 1358.36 544.02 –7.03 –333.15

MP3 13451.1 5002.35 1022.55 –35.01 –707.28 –1108.92 –1322.34

E[3,3] SCF –10338.26 –5375.49 –2753.63 –1962.94 –1393.48 –984.06 –690.75

MP2 –10086.53 –5709.1 –2921.71 –2051.66 –1426.56 –982.53 –670.35

MP3 –10431.1 –6005.15 –3060.54 –2136.05 –1472.87 1003.66 –675.73

R, Å 5.4 5.6 6 6.4 6.8 7.2 7.6

Eint SCF 1019.86 783.13 453.85 255.73 139.88 74.23 38.25

MP2 –988.25 –945.22 –816.12 –669.27 –529.66 –408.84 –310.48

MP3 –1856.6 –1701.95 –1387.69 –1097.99 –849.41 –646.42 –486.79

E[2,3] SCF 1501.52 1116.61 610.19 326.84 171.26 87.69 43.9

MP2 –535.2 –641.97 –684.24 –614.23 –507.68 –400.47 –307.43

MP3 –1407.33 –1407.21 –1266.51 –1051.83 –833.73 –642.21 –486.39

E[3,3] SCF –481.66 –333.48 –156.34 –71.11 –31.38 –13.47 –5.65

MP2 –453.05 –303.25 –131.88 –55.03 –21.98 –8.38 –3.05

MP3 –449.27 –294.74 –121.18 –46.16 –15.68 –4.21 –0.4



From the results of Table V one can tell that the van der Waals minimum
of the Na2 dimer at the UMP3 level of theory is located at 5.4 Å and is
–469.11 µEh deep, while the minimum of the trimer lies distinctly closer, at
the distance equal to 4.8 Å, and the interaction energy amounts to
–2180.15 µEh. For the equilibrium geometry of Na3, the two-body parts of
the interaction energy amount to only 30%, while the rest is the three-body
effect. The total nonadditivity is attractive for all distances under consider-
ation, while two-body total effect is attractive for long distances and repul-
sive for short distances. This is in agreement with the findings of Higgins
et al.11, who had a better representation of the two-body potential (HF +
dispersion model), and thus located the dimer and trimer minima at some-
what shorter distances. Indeed, our MP3 two-body energies are certainly
not basis set saturated, and thus not attractive enough – the fourth-order
terms would provide additional attraction.

To elucidate the origin of the extraordinarily large three-body forces, per-
turbation contributions are collected and plotted in Table VI and Fig. 2.
The Heitler–London exchange, dispersion and SCF deformation are pre-
sented, and compared with the SCF, UMP2, UMP3 and correlation correc-
tions.
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TABLE VI
The (4 ′A2)Na3 trimer. Comparison of perturbative results with the SCF deformation and
supermolecular results. Energy in µEh

R, Å εexch
HL εdisp

( )30 ∆Edef
SCF ∆ESCF E(MP2) E(MP3) ∆E ( )2 ∆E ( )3

4 –4305.37 341.22 –1070.12 –5375.49 –5709.10 –6005.15 –333.61 –296.05

4.2 –3313.47 260.01 –537.73 –3851.20 –4114.68 –4325.97 –263.47 –211.29

4.4 –2514.78 197.52 –238.85 –2753.63 –2921.71 –3060.54 –168.08 –138.83

4.6 –1882.81 149.66 –80.12 –1962.94 –2051.66 –2136.05 –88.72 –84.39

4.8 –1391.03 113.17 –2.45 –1393.48 –1426.56 –1472.87 –33.09 –46.31

5.2 –730.59 64.47 39.84 –690.75 –670.35 –675.73 20.40 –5.38

5.6 –365.70 36.69 32.22 –333.48 –303.25 –294.74 30.23 8.51

6 –175.22 20.95 18.88 –156.34 –131.88 –121.18 24.46 10.70

6.4 –80.68 12.05 9.57 –71.11 –55.03 –46.16 16.07 8.87

6.8 –35.83 6.99 4.45 –31.38 –21.98 –15.68 9.40 6.30

7.2 –15.41 4.11 1.94 –13.47 –8.38 –4.21 5.09 4.17

7.6 –6.43 2.46 0.78 –5.65 –3.05 –0.40 2.60 2.65



One can see in Fig. 2 that the nonadditivity of the Na3 trimer is domi-
nated by the Heitler–London exchange energy. In the minimum of Na3 in-
teraction energy (4.8 Å), the difference between the Heitler–London
exchange energy and the SCF nonadditivity is less than 2.5 µEh. The gap be-
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FIG. 2
The three-body terms in the Na3 trimer from the IMPPT calculations. The labels: disp, ind,
(HL)ex, SCF, (SCF)def denote: εdisp

(30) , εind,r
(30) [2(1),3(1)], Heitler–London exchange, SCF non-

additivity, and SCF deformation, respectively. Θ = 60° (a), R = 4.6 Å (b)
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tween the ∆ESCF[3,3] and ε exch
HL is relatively small for longer distances, but it

increases up to 30% for the shorter interatomic distances (at 3.6 Å). This
gap defines the SCF-deformation nonadditivity ∆Edef

SCF , and may be viewed as
the nonadditive effect of the induction interaction modiffed by the accom-
panying exchange effects. Note that the effect changes its sign at around
4.8 Å, from attractive at smaller R to repulsive at larger R.

The correlation nonadditivities, included in ∆E(2) and ∆E(3), are of second-
ary importance, but not to be neglected quantitatively. Both are similar in
magnitude and both change their signs in the van der Waals minimum re-
gion from minus at small R to plus at large R. At larger R, ∆E(3) agrees well
with the dispersion nonadditivity, and at smaller R it is apparently affected
strongly by the exchange and charge-overlap effects. Interestingly, the
purely exchange nonadditivity of ∆E(2) is as important as ∆E(3).

To better understand the nature of the exchange effect, the SE and TE terms
of Heitler–London exchange energy are plotted in Fig. 3 and compared
with the SCF energy as a function of the interatomic distance for the equi-
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TABLE VII
The SE and TE components of the Heitler–London exchange nonadditivity in the (4 ′A2)Na3
trimer calculated via pseudodimer approach in comparison to the SCF deformation. Energy
in µEh

R, Å SE_part SE_tot TE εexch
HL ∆ESCF

3.2 7035.61 21106.82 –31692.69 –10585.87 –

3.6 3502.45 10507.36 –17466.55 –6959.19 –10338.26

4 1661.37 4984.12 –9289.48 –4305.37 –5375.49

4.2 1125.77 3377.32 –6690.79 –3313.47 –3851.20

4.4 755.18 2265.55 –4780.33 –2514.78 –2753.63

4.6 501.77 1505.31 –3388.12 –1882.81 –1962.94

4.8 330.40 991.20 –2382.23 –1391.03 –1393.48

5.2 139.66 418.99 –1149.58 –730.59 –690.75

5.6 57.15 171.46 –537.17 –365.70 –333.48

6 22.67 68.00 –243.22 –175.22 –156.34

6.4 8.73 26.18 –106.86 –80.68 –71.11

6.8 3.27 9.80 –45.63 –35.83 –31.38

7.2 1.19 3.58 –18.98 –15.41 –13.47

7.6 0.42 1.27 –7.71 –6.43 –5.65



lateral-triangle geometry. All the results are collected in Table VII. The SE
term represents the coupling between the exchange of two electrons origi-
nating from two monomers with the electrostatic interaction with the third
monomer. There are three possibilities of such coupling, which differ in
various permutation of the monomers. In the case of the equilateral trian-
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FIG. 3
The SE and TE exchange contributions to the Heitler–London exchange energy compared with
the SCF nonadditivity in the Na3 system. The R dependence is shown for the equilateral trian-
gle (Θ = 60°) (a), and the angular dependence for the NaB distances fixed at 4.6 Å value (b)
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gle, all three SE parts are equal. As a consequence, the total SE term, which
is denoted here as SE_tot, is the SE term multiplied by 3.

The TE term represents the part of the exchange nonadditivity involving
the exchange of electrons from all three monomers, coupled with electro-
static interaction. In the case of Na3 for studied geometries, the attractive
character of the Heitler–London energy is determined by the triple ex-
change term. On the other hand, the SE term, which exhibits the opposite
behavior, cannot be neglected. The balance between SE and TE terms cre-
ates the specific anisotropy of the Heitler–London exchange energy and can
cause dramatic changes in the interaction energy from attractive to repul-
sive.

The angular dependence of the nonadditivity in the Na3 cluster was also
evaluated for the isosceles-triangle geometry. Distances between atoms
Na(1)–Na(2) and Na(1)–Na(3) were fixed at 4.6 Å, the distance related to the
minimum energy especially of the Na3 cluster. The angle Na(2)–Na(1)–Na(3)
was varied from 60 to 180° with the step of 15°. The results are presented in
Table VIII.

Table VIII shows different interaction energy contributions. The angular
dependence of nonadditivity shows that the Heitler–London exchange ef-
fects are large and important for all Θ, whereas the importance of the SCF
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TABLE VIII
Angular dependence of various three-body components of the interaction energy of the
(4 ′A2)Na3 trimer. The interatomic distance was fixed at 4.6 Å. The number in parentheses la-
bels Na atoms from which electrons are exchanged. The Θ angle Na(2)–Na(1)–Na(3) is var-
ied. Energy in µEh

Θ SE_(1-2) SE_(2-3) SE_tot TE εexch
HL ∆Edef

SCF εdisp
( )30 ∆ESCF

60 501.77 501.77 1505.31 –3388.12 –1882.81 –80.12 149.66 –1962.94

75 179.98 276.29 636.24 –1683.81 –1057.57 –18.99 92.79 –1076.56

90 8.09 144.80 160.98 –681.05 –520.07 57.20

105 –74.90 76.88 –72.91 –127.28 –200.19 –129.68 34.29 –329.87

120 –114.63 43.41 –185.86 169.37 –16.49 –175.34 19.54 –191.83

135 –134.03 26.98 –241.09 328.71 87.62 –203.55 10.19 –115.93

150 –143.52 18.90 –268.13 413.45 145.32 –218.45 4.50 –73.132

165 –147.81 15.16 –280.45 454.79 174.34 1.43

180 –149.02 14.07 –238.98 467.15 183.17 0.46



deformation grows with the increasing angle. For angles larger than 120°,
the value of the SCF deformation is similar to the total supermolecular MP3
nonadditivity.

The ε exch
HL term shows a strong anisotropy determined mainly by the TE

term (see Fig. 3). The change of sign of ε exch
HL , as well as TE and SE_(1-2), is

observed at about 100° (see Fig. 3). For small angles the Heitler–London ex-
change energy shows a negative sign while for larger angles it is positive.

The dispersion nonadditive term is relatively small for all Θ. It barely
influences the total nonadditivity.

To summarize, the geometry and energetics of the Na3 cluster is deter-
mined by the two-body potential of the Na2 dimer and attractive three-
body exchange effects. The three-body nonadditive energy amounts to 65%
of the total interaction energy at the UMP3 level of theory. For all studied
distances, the whole nonadditivity is attractive and considerably shortens
the interatomic trimer equilibrium distance with respect to the Na2 dimer
equilibrium distance. The minimum energy of the Na2 dimer is located at
5.4 Å while that of the Na3 trimer at 4.8 Å. The three-body energy is domi-
nated by the Heitler–London exchange energy and especially by its TE com-
ponent. It originates from the Pauli exclusion principle imposed on the
unperturbed monomers; a serious net reduction of the exchange effect is
observed after attaching a third monomer. The three-body induction and
dispersion effects are of secondary importance.

THE LOWEST QUARTET STATES OF THE Na2B TRIMER

The isosceles-triangle arrangement of the Na2B trimer was assumed in all
calculations. Three quartet states of the Na2B trimer were studied, derived
from the 2s 2p 3s 3sB

2
B
1

Na1
1

Na2
1 electronic configuration, and related to the A2,

B2, and A1 symmetries. For the isosceles-triangle arrangements, the singly
occupied 3s orbitals of Na atoms form an orbital of the a1 and b2 symmetry
of the trimer. The singly occupied p orbital of boron is the source of the va-
riety states in Na2B. The A2 state occurs when the singly occupied p orbital
is perpendicular to the Na-B-Na plane (b1 symmetry). The B2 state occurs
when the singly occupied p orbital of B atom is located in the Na-B-Na
plane and is perpendicular to the Na-Na dimer axis (a1 symmetry). The A1
symmetry occurs when the p orbital lies in the plane Na-B-Na, but is paral-
lel to the Na-Na dimer axis (b2 symmetry). For other geometries, C2v is re-
duced to the Cs symmetry. In such a case, the B1 state becomes the A′′ state,
whereas the A1 and B2 states give rise to two A′ states. For the collinear ar-
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rangement Na-B-Na, the B2 state transforms into the Σ state whereas the A1
and B1 states degenerate to form the Π state.

Hereafter, the labels of p orbital symmetry in the trimer will be used to
describe different states of Na2B in the text. Such a convention ensures
transparent notation consistent with the RG2B(2P) type of complex.

The supermolecular method through the UMP3(full) level of theory,
IMPPT and pseudodimer approaches were applied33,34. In addition, the NaB
dimer was studied at the UMP4 level of theory. All calculations were per-
formed with the aug-cc-pVTZ basis set for B, and Gutowski’s basis set for
Na 10.

To obtain supermolecular pairwise and nonadditive energy in the Na2B,
monomers and dimers should have the same orientation of the p-symmetry
orbital as it is in the trimer. More specifically, if the monomer, dimer and
trimer calculations are performed with the TCBS, one obtains the mono-
mers and trimer having the orientation and symmetry shown in Fig. 1, but
the dimer comes out within the Σ and Π symmetries as in Fig. 4. The orien-
tations of the p orbital in monomers coincides with that of the trimer, due
to the same symmetry of Hamiltonian within TCBS.

In the case of the A1 and B2 states, the direction of the p orbital is rotated
by Θ/2 or (π/2 – Θ/2) with respect to the Π and Σ states of the NaB dimer,
where Θ is the angle between two Na–B bonds. In order to have consistent
alignment of the p orbital in the monomer and dimers, the dimers should
be first rotated to the same orientation as in the trimer, that is, from the Σ
and Π dimer adiabatic states to the A1 and B2 diabatic dimer states. Hereaf-
ter we call the energetic effect of this transformation the orientational
nonadditivity. In the literature35–37 one may also find the term “matrix
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FIG. 4
Orientation of the p orbital in the NaB dimer within TCBS frame of Na2B is determined with
respect to the Na atom, but also with respect to the ghost atom. The B and Na atoms are drawn
with solid lines while the ghost atom is drawn with a dotted line. The solution of the
Schrödinger equation gives two Π states and one Σ. The ghost removes the degeneracy of the Π
state. One Π state is coplanar with the Na2B plane while the other is perpendicular. The figures
show the NaB dimer in Π-perpendicular, Π-coplanar, and Σ-coplanar states, respectively
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nonadditivity”. It is the change of the pair interaction energy of Na and B
in the cluster caused by the reorientation of the open-shell orbital from the
Π and Σ states, due to the appearance of the third monomer.

Once the orientation of the p orbital in the trimer, dimers and monomers
is the same, then Eqs (2)–(5) yield the nonadditive effect that we hereafter
refer to as the genuine three-body nonadditivity. It may be further dissected
into the exchange, induction, dispersion, etc. nonadditivities18,19.

Nonadditivity from Supermolecular Approach

Rotation of Two-Body Interaction Potentials

The orientation of the singly occupied p orbital in the TCBS calcula-
tions18,19,28 of monomers is the same as in the trimer for both the A1 and B2
states. However, calculations of the NaB dimer with TCBS provide states of
the C∞v symmetry: one Σ state and two Π states. Two instead of one Π states
arise because of TCBS which fixes the Na2B plane in space and distinguishes
between the coplanar (with the TCBS plane) Π state and perpendicular (to
the TCBS plane) Π state. Let us denote the related interactions as VΠ

copl and
VΠ

perp , respectively.
In order to obtain the C2v symmetry dimers, one should rotate the

coplanar energies of the NaB dimers. In general, the interaction of two spe-
cies, one of the spherical symmetry as the Na atom and one of the p sym-
metry as the B atom, could be expanded in terms of the isotropic part and
the anisotropy of the interaction38–41

V R V R P V R( , ) ( ) (cos ) ( ) ,ϑ ϑ= + ⋅0 2 2 (6)

where V0, V2, and P2 denote, respectively, the isotropic interaction, the ani-
sotropy of interaction, and the Legendre polynomial of the second order.
The above Eq. (6) extrapolates the Π and Σ states, which correspond respec-
tively to cos ϑ equal to 0 and 1, to any arbitrary orientations.

Averaging over all possible states of NaB dimer gives the value of the iso-
tropic term:

V V V0

1
3

2= +( ) .Π Σ (7)
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The anisotropic part of interaction is

V V V2

5
3

= −( ) .Σ Π (8)

Using the explicit expressions of the V0 and V2 components in terms of
VΣ and VΠ, the orientational dependence of interaction between the
s-symmetry and p-symmetry orbitals amounts to:

V R V R V R V R( , ) ( ) ( ( ) ( )) cos ,ϑ ϑ= + − ⋅Π Σ Π
2 (9)

where ϑ is the angle between the p orbital and the bond axis. The angular
dependence of the interaction potential from the Legendre expansion is
shown in Fig. 5.

In the case of the Na2B trimer, it is more convenient to express the inter-
action energies for the A1 and B2 states of both NaB dimers by the angle Θ
instead of the angle ϑ. The Θ angle is measured between the two NaB
bonds; for the A1 and B2 states of the isosceles Na2B arrangement, it strictly
relates to ϑ. In the case of the A1 state, half of Θ is equal to the ϑ angle, and
in the case of the B2 state the ϑ angle complements the right angle:

ϑ A1

1
2

= Θ (10)
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FIG. 5
According to the Legendre expansion, the interaction potential of the NaB dimer may be ex-
pressed as a simple function of the isotropic potential V0 and the anisotropic part V2 for any
orientation of the p orbital: V(R,ϑ ) = V0(R) + V2(R) · P2(cos ϑ )

R

ϑ



ϑ πB 2

1
2

1
2

= − Θ. (11)

Relationships between angles ϑ A1
, ϑ B 2

, and Θ in isosceles trimers are ex-
plicitly showed in Fig. 6. Applying these relationships to the NaB dimer
with the trimer-centered basis of the Na2B system in isosceles geometry
gives energies of the dimers with the reoriented p orbital. For example, the
interaction energy of the NaB dimer in the A1 and B2 arrangements is given
by ref.39

( ) ( )V V VA1

2 2 2= +Σ ΠΘ / 2 Θ /cos sin (12)

( ) ( )V V VB 2

2 2= +Σ ΠΘ / 2 Θ / 2sin cos , (13)

where the Θ angle is the Na–B–Na angle. For the sake of the consistency of
the numerical procedure, the VΣ and VΠ terms are coplanar, VΣ

copl and VΠ
copl ,

in the above equations. Similarly the B1 state is a pure VΠ
perp perpendicular

state.
We are now in a position to write down the total energies of the dimers

properly “reoriented”:

E E Etot
A

tot
copl

tot
coplNaB) = NaB N1 2 2( ( ) cos ( / ) (, ,Σ ΠΘ⋅ + aB) sin ( / )⋅ 2 2Θ (14)
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FIG. 6
In the isosceles arrangement of the Na2B trimer the orientation of the p orbital of the B atom
is symmetric, so angle ϑ between the B-Na axis and the p orbital may be simply expressed in
terms of the Na–B–Na Θ angle. The A1 state corresponds to ϑ = Θ/2 while in the case of B1 one
has ϑ = π/2 – Θ/2
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A1 symmetry B2 symmetry

ϑ
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E Etot
B

tot
,perpNaB) = NaB1 ( ( )Π (15)

E E Etot
B

tot
copl

tot
copl2 NaB) = NaB N( ( ) sin ( / ) (, ,Σ ΠΘ⋅ +2 2 aB) cos ( / ).⋅ 2 2Θ (16)

These energies may be readily used in Eqs (2)–(5) to obtain genuine
three-body nonadditivity. It is also of interest to derive the related two-
body interaction energies in the A1 and B2 orientations of the p orbital

V E E EA tot
A

tot
A

totNaB) B) Na)
1

1 1= − −( ( ( (17)

V E E EB tot
B

tot
B

totNaB) B) Na)
1

1 1= − −( ( ( (18)

V E E EB tot
B

tot
B

totNaB) B) Na).
2

2 2= − −( ( ( (19)

The values of the VΣ
copl , VΠ

copl , and VΠ
perp interaction energies of the NaB

dimer are collected in Table IX. The first and the second sections describe,
respectively, the coplanar Π and Σ interactions of NaB obtained by the rota-
tion of the p orbital of the B atom from the A1 and B2 symmetries. The last
section describes the perpendicular Π interaction of NaB obtained from the
B1 symmetry of the B atom and NaB dimer.

The Orientational Nonadditivity

The most appropriate definition of the two-body orientation nonadditivity
is with respect to the isotropic part of the potential V0. The reference levels
are introduced separately for each NaB pair (cf. ref.39). Moreover, it is con-
venient to introduce two reference energy levels for each NaB pair. One of
them is the coplanar isotropic potential V0

copl , and the other is the perpen-
dicular isotropic potential V0

perp . These potentials were obtained as averages
over the well separated states of the NaB dimer in the Na2B trimer. For any
arrangement of the Na2B trimer, the A′′ (or B1) state is well separated from
the others with the perpendicular p orbital of B (the VΠ

perp potential).
Similarly, both A0 states (or A1 and B2) are combinations of two coplanar
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states (VΠ
copl and VΣ

copl ). The V0
perp isotropic perpendicular potential is equal

to VΠ
perp , while the coplanar isotropic one V0

copl is equal to 1
2 (VΣ

copl + VΠ
copl ).

The total orientational nonadditivities in the A1, B1, and B2 states are the
sums of contributions of nonadditivities from pair interactions Na(1)–B and
Na(2)–B:

V V VNON
copl,A

NON
copl,A

NON
copl,A(Na(1)B) + (Na(2)B1 1 1= ) (20)

V V VNON
copl,B

NON
copl,B

NON
copl,B(Na(1)B) + (Na(2)B2 2 2= ) (21)

V V VNON
perp,B

NON
perp,B

NON
perp,B(Na(1)B) + (Na(2)B1 1 1= ) . (22)
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TABLE IX
Interaction energies of the NaB dimer with properly oriented monomers as in the Σ and Π
states of the dimer. Energy in µEh

R, Å

VΠ
copl VΣ

copl VΠ
perp

SCF MP2 MP3 SCF MP2 MP3 SCF MP2 MP3

4 –414.81 –2795.27 –3204.47 2129.34 1318.47 1118.79 –413.67 –2792.98 –3201.65

4.2 –247.19 –2098.37 –2428.79 1663.53 923.86 739.92 –246.51 –2096.84 –2426.64

4.4 –150.48 –1590.18 –1856.04 1279.03 619.63 453.52 –150.08 –1589.19 –1854.39

4.6 –94.32 –1212.54 –1425.75 967.99 391.46 243.89 –94.04 –1211.91 –1424.49

4.8 –61.13 –928.93 –1099.59 721.64 225.59 96.18 –60.92 –928.55 –1098.64

5 –41.01 –714.67 –851.23 530.43 109.11 –3.16 –40.81 –714.43 –850.51

5.2 –28.43 –552.20 –649.03 384.72 30.51 –61.86 –28.25 –552.08 –661.05

5.4 –20.28 –428.62 –516.38 275.55 –19.93 –102.42 –20.08 –428.53 –515.98

5.6 –14.84 –334.30 –404.92 194.98 –50.13 –120.22 –14.60 –334.23 –404.60

6 –8.42 –206.49 –252.65 94.10 –72.73 –122.77 –8.13 –206.48 –252.52

6.4 –5.04 –130.37 –161.00 43.12 –69.84 –105.26 –4.74 –130.36 –160.93

6.8 –3.08 –84.19 –104.85 18.56 –58.18 –83.21 –2.86 –84.23 –104.88

7.2 –1.95 –55.74 –69.94 7.30 –45.36 –63.09 –1.74 –55.74 –69.93

7.6 –1.25 –37.85 –47.78 2.38 –34.24 –46.90 –1.10 –37.84 –47.77



The orientational nonadditivity of the Na(1)B and Na(2)B interactions is
defined as the difference between the interaction energy of the dimer with
the p orbital rotated by ϑ1 and ϑ2 (as in Fig. 1) from the respective NaB
bonds:

V i = V R V ii iNON
X,Y X,Y XNa( )B) ) (Na( )B) ,( ( ,ϑ − 0 (23)

where i = 1, 2 and X = copl, perp. Y stands for A1 or B2 for X = copl and B1
for Y = perp. The last equation gives zero as the orientational nonadditi-
vity for the B1 state. The following simple expressions are obtained for the
isosceles-triangle arrangements of Na2B

V V VNON
copl,A copl copl1 = + ⋅ −cos ( )Θ Σ Π (24)

V V VNON
copl,B copl copl2 = − ⋅ −cos ( ) ,Θ Σ Π (25)

where the angle Θ is measured between the two interatomic NaB axes in
the Na2B triangle. A detailed derivation has been given in ref.42

Since in our case all calculations were performed for the equilateral geom-
etries of the Na2B trimer, one can easily show that the orientational non-
additivity is explicitly given by:

V V VNON
copl,A copl copl1

1
2

1
2

= + −Σ Π (26)

V V VNON
copl,B copl copl2

1
2

1
2

= − +Σ Π . (27)

The values of the orientational nonadditivity of the Na2B system for the
A1 and B2 states are collected in Table X. A comparison of the orientational
vs genuine nonadditivities with the isotropic part of the interaction is
shown in Fig. 7.

The orientational nonadditivity for the A1 state has the same value as for
the B2 state, but of the opposite sign. The formulas for the nonadditivity
(Eqs (24)–(25)) show that it vanishes when VΣ is equal to VΠ. This is intu-
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itively reasonable. Additionally, the nonadditivity vanishes when Θ is the
right angle. This is because for the right angle both the NaB potentials are
exactly equal to the values of the reference isotropic potential.

One can see in Table XI that from the energetic point of view it is advan-
tageous to turn into the B2 direction and not advantageous to turn into the
A1 direction. The magnitude of the orientational nonadditivity is compara-
ble with the total isotropic V0

copl pairwise interaction energy of the NaB dimer.
This is because the B2 state is closer to the Π state and the A1 to the Σ state.

BSSE and Its Orientational Dependence

The isotropic p-orbital orientation-independent BSSE occurs in the B1 state.
Its values were obtained by subtraction of the TCBS energy of the B1 sym-
metry B atom and the MCBS energy of the B atom.
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TABLE X
The interaction energy of the NaB dimer obtained within TCBS framework for the equilat-
eral-triangle arrangement of Na2B. The orientation of the singly occupied p orbital of the B
atom is the same as in A1, B2, and B1 symmetries of the quartet state of the Na2B trimer. En-
ergy in µEh

R, Å

A1 B2 B1

SCF MP2 MP3 SCF MP2 MP3 SCF MP2 MP3

4 1494.25 296.55 44.31 220.28 –1773.35 –2129.99 –413.67 –2792.98 –3201.65

4.2 1187.24 175.29 –45.12 229.10 –1349.80 –1643.75 –246.51 –2096.84 –2426.64

4.4 923.39 74.50 –116.31 205.15 –1045.05 –1286.39 –150.08 –1589.19 –1854.39

4.6 704.41 –2.13 –165.50 169.26 –818.95 –1016.36 –94.04 –1211.91 –1424.49

4.8 528.08 –55.86 –194.89 132.43 –647.48 –808.52 –60.92 –928.55 –1089.64

5 389.65 –90.22 –207.90 99.77 –515.33 –646.48 –40.81 –714.43 –850.51

5.2 283.24 –109.45 –208.66 73.06 –412.24 –502.23 –28.25 –552.08 –661.05

5.4 202.94 –117.48 –200.88 52.33 –331.07 –417.92 –20.08 –428.53 –515.98

5.6 143.34 –117.68 –187.65 36.80 –266.75 –337.49 –14.60 –334.23 –404.60

6 68.42 –104.50 –153.53 17.27 –174.72 –221.88 –8.13 –206.48 –252.52

6.4 30.77 –84.18 –118.44 7.31 –116.03 –147.81 –4.74 –130.36 –160.93

6.8 13.01 –64.11 –88.07 2.47 –78.27 –99.98 –2.86 –84.23 –104.88

7.2 5.05 –47.41 –64.26 0.30 –53.69 –68.77 –1.74 –55.74 –69.93

7.6 1.60 –34.69 –46.64 –0.47 –37.40 –48.03 –1.10 –37.84 –47.77



Table XII lists the values of BSSE for the B1 state in comparison with the
values of the total interaction energy for this state. One can see that BSSE is
over one order of magnitude larger at the correlated levels of theory than at
the SCF level, at any interatomic distances.
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FIG. 7
Comparison between the orientational and genuine parts of the nonadditivity in Na2B at the
SCF and MP3 levels of theory. V0, VNON, and E [3,3] denote, respectively, isotropic interaction,
orientational, and genuine nonadditivity. A1 state, Θ = 60° (a); B2 state, Θ = 60° (b)
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To clarify the idea of the orientational dependence of BSSE, one may con-
sider the difference between the “coplanar” and the “perpendicular” inter-
action energies of the Π state of the NaB dimer.

We also show in Table XIII the percentage values of BSSE in the A1 and B2
states. The percentage errors were calculated with respect to the Π perpen-
dicular interaction of NaB:

∆ Π Π Π Π( ) ( ) /= ⋅ −100 V V Vcopl perp perp (28)

∆ Π Π Π(BSSE - A (BSSE - Acopl perp perp
1 1100) ( ) ) /= ⋅ −V V V (29)

∆ Π Π Π(BSSE - B (BSSE - Bcopl perp perp
2 2100) ( ) ) / ,= ⋅ −V V V (30)
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TABLE XI
Orientational nonadditivity of the Na2B system for the A1 and B2 states. Energy in µEh

R, Å

SCF MP2 MP3

V0 VNON
A1 VNON

B2 V0 VNON
A1 VNON

B2 V0 VNON
A1 VNON

B2

4 857.26 1272.07 –1272.07 –738.40 2056.87 –2056.87 –1042.84 2161.63 –2161.63

4.2 708.17 955.36 –955.36 –587.25 1511.11 –1511.11 –844.44 1584.35 –1584.35

4.4 564.27 714.76 –714.76 –485.27 1104.90 –1104.90 –701.26 1154.78 –1154.78

4.6 436.84 531.15 –531.15 –410.54 802.00 –802.00 –590.93 834.82 –834.82

4.8 330.26 391.39 –391.39 –351.67 577.26 –577.26 –501.70 597.88 –597.88

5 244.71 285.72 –285.72 –302.78 411.89 –411.89 –427.19 424.04 –424.04

5.2 178.15 206.57 –206.57 –260.85 291.36 –291.36 –355.44 293.58 –293.58

5.4 127.63 147.92 –147.92 –224.27 204.34 –204.34 –309.40 206.98 –206.98

5.6 90.07 104.91 –104.91 –192.21 142.09 –142.09 –262.57 142.35 –142.35

6 42.84 51.26 –51.26 –139.61 66.88 –66.88 –187.71 64.94 –64.94

6.4 19.04 24.08 –24.08 –100.10 30.26 –30.26 –133.13 27.87 –27.87

6.8 7.74 10.82 –10.82 –71.19 13.00 –13.00 –94.03 10.82 –10.82

7.2 2.67 4.62 –4.62 –50.55 5.19 –5.19 –66.51 3.42 –3.42

7.6 0.56 1.82 –1.82 –36.05 1.81 –1.81 –47.34 0.44 –0.44



where BSSE-A1 and BSSE-B2 stand for the interaction calculated with the
nonrotated B monomer in the A1 and B2 states, respectively.

V E E EΠ
Πcopl
tot

,copl
tot
A

tot(BSSE - A NaB) – B Na1
1) ( ( ) ( )= − (31)

V E E EΠ
Πcopl
tot

,copl
tot
B

tot(BSSE - B NaB) – B Na2
2) ( ( ) ( )= − (32)

It is clear from Table XIII that the orientational parts of BSSE are rela-
tively small but not negligible. The reorientation of the open-shell mono-
mer or dimers gives the lowest BSSE and is the appropriate procedure to
obtain interaction energy with the smallest possible error.
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TABLE XII
Basis set superposition error for the B1 state of the Na2B system in comparison with the
three-body interaction energy for the same state. Energies in µEh

R, Å

BSSE E[3,3]

SCF UMP2 UMP3 SCF UMP2 UMP3

4 –21.4 –754.6 –774.0 –1285.26 –1409.10 –1387.42

4.2 –19.1 –652.9 –667.8 –837.69 –795.30 –760.07

4.4 –16.9 –563.3 –574.7 –539.21 –441.49 –405.28

4.6 –15.0 –485.9 –494.8 –341.91 –238.71 –206.70

4.8 –13.2 –421.4 –429.3 –213.35 –124.39 –98.16

5 –11.7 –370.0 –377.9 –130.94 –61.51 –40.95

5.2 –10.6 –330.3 –339.1 –78.97 –28.02 –12.40

5.4 –9.9 –299.9 –310.0 –46.79 –11.02 0.62

5.6 –9.4 –276.2 –287.6 –27.13 –2.91 5.64

6 –8.9 –239.2 –252.3 –8.49 1.60 6.10

6.4 –8.2 –206.2 –219.2 –2.19 1.43 3.73

6.8 –7.0 –173.0 –184.5 –0.31 0.68 1.86

7.2 –5.5 –141.0 –150.2 0.06 0.11 0.74

7.6 –4.1 –112.5 –119.5 0.13 –0.07 0.28



Genuine Nonadditive Effects from Supermolecular Approach

In general, the structure and energy of the Na2B complex is determined by
the two-body forces. A few comments about two-body energies are thus
pertinent.

Gutowski10 determined the minimum of the lowest triplet state of the
Na2 interaction at the CCSD(T) level of theory with a large basis set. He ob-
tained the well depth of –809.66 µEh at 5.129 Å.

The minima of the lowest triplet states of the NaB interaction were found
by us at the full UMP4(SDTQ) level with aug-cc-pVTZ basis set for B atom
and Gutowski’s basis for the Na atoms10. The NaB dimer shows extremely
strong anisotropy. Both the Σ and Π states of the dimer have a completely
different character. A very deep minimum of –27 974.0 µEh of the Π state is
located at 2.5 Å (see also Simons et al.1 for previous calculations of this di-
atom), while a very weak minimum of –147.279 µEh of the Σ state appears
at 5.7 Å. This must result in a large orientational nonadditivity in the Na2B
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TABLE XIII
Orientational part of BSSE for the NaB dimer with respect to the perpendicular state VΠ

perp

calculated for monomer B in the A1 and B2 states

% error
R, Å

∆(Π)a ∆(BSSE-A1)a ∆(BSSE-B2)a

SCF UMP2 UMP3 SCF UMP2 UMP3 SCF UMP2 UMP3

4 0.28 0.08 0.09 –0.18 –0.38 –0.31 0.43 0.24 0.22

4.2 0.28 0.07 0.09 –0.85 –0.59 –0.50 0.65 0.30 0.28

4.4 0.27 0.06 0.09 –2.05 –0.86 –0.75 1.04 0.37 0.37

4.6 0.29 0.05 0.09 –3.97 –1.17 –1.04 1.71 0.46 0.46

4.8 0.34 0.04 0.09 –6.66 –1.51 –1.35 2.68 0.56 0.56

5 0.48 0.03 0.09 –9.69 –1.82 –1.62 3.87 0.65 0.66

5.2 0.61 0.02 –1.82 –12.14 –2.05 –1.82 4.87 0.71 –1.82

5.4 1.01 0.02 0.08 –12.40 –2.14 –1.87 5.48 0.74 0.73

5.6 1.62 0.02 0.08 –9.52 –2.07 –1.77 5.33 0.72 0.69

6 3.46 0.01 0.05 4.77 –1.61 –1.30 3.03 0.55 0.50

6.4 6.29 0.01 0.04 19.29 –1.21 –0.89 1.96 0.41 0.35

6.8 7.80 –0.05 –0.03 17.83 –1.42 –1.07 4.45 0.41 0.32

a For definitions, see Eqs (28)–(30).



trimer. Interestingly, the NaB interaction at the SCF level of theory turns
out to be attractive for the Π state and repulsive for the Σ state.

An unusually large stabilization of the Π dimer is due to a reduction of
the exchange repulsion by a perpendicular arrangement of the singly occu-
pied p orbital, so that the attractive dispersion interaction can extend to
smaller internuclear distances. This type of bonding has been reported by
Breckenridge and collaborators43–45, Sohlberg and Yarkony2, and rational-
ized by Bililign et al.46

The genuine nonadditivity in Na2B and the pairwise additive interaction
energy were obtained from supermolecular calculations, applying Eqs
(2)–(5). For the B1 state this was straightforward, as the NaB dimer and the
trimer are related to the same, perpendicular arrangement of the p orbital
(no orientational nonadditivity). To obtain the pair interactions in the A1
and B2 states, Eqs (14)–(19) were applied.

Table XIV lists supermolecular results for the Na2B trimer in the states of
the B1, B2, and A1 symmetry, respectively. All results were obtained for the
equilateral triangle arrangements at the SCF, UMP2, and UMP3 levels of
theory. The interatomic distance R varied from 2.4 to 7.6 Å.

The first three columns consist of the total interaction energy of the
trimer. The next three columns describe the two-body part of the interac-
tion energy (including the orientational nonadditivity). The last three col-
umns show the genuine three-body energy.

Table X shows the interaction energies of the NaB dimer in the symmetry
states of the trimer (including the orientational nonadditivity).

The states of the trimer can be approximately related to the states of the
dimer. The B1 state is a purely Π state from the point of view of NaB, and
thus it is the deepest. B2 and A1 correspond to a mixture of the Π and Σ
states, but not with equal weight; A1 corresponds more to Σ while B2 corre-
sponds more to Π. The ordering of states based on two-body forces only is
B1 < B2 < A1 for the studied ranges of interatomic distances. Consequently,
the equilibrium structure of the Na2B trimer in the B1 state should be linear
or nearly linear to optimize the equilibrium distances of all partners. For
the same reason, the minimum of the B2 state occurs for the triangle geom-
etry (small Θ) with the interatomic angle limited by the Na2 repulsion and
the genuine nonadditivity effect, while for the A1 state the minimum
should be close to the B1 state minimum (i.e., it should be either linear or
nearly linear).

The three-body nonadditive energy in the Na2B trimer is a very impor-
tant contribution to the interaction energy of the trimer, cf. Table XIV, and
Figs 7 and 8. The neglect of the three-body energy would cause a large er-
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ror. For example, for the B1 state the genuine MP3 nonadditivity amounts
to about 30% for the van der Waals region (R = 2.8 Å), and it rapidly de-
creases to only 0.5% when the interatomic distance is twice as long (see
Fig. 8). For the B2 state almost one third of the attractive two-body interac-
tion is cancelled by the three-body effects in the minimum region (R =
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FIG. 8
Comparison of genuine nonadditivity with the whole interaction energy and its pairwise part
in Na2B. B1 state, SCF level, Θ = 60° (a); B1 state, MP3 level, Θ = 60° (b)
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5.0 Å). For the A1 state the nonadditivity is attractive and larger in size than
the pairwise part of the interaction in the minimum region.

The nonadditive forces appear to be purely repulsive for the B2 state. In-
terestingly, the B1 and A1 states are attractive for short distances, but repul-
sive in a long range, with a very weak maximum at about 6.0 and 6.8 Å,
respectively.

One can see in Table XIV that the pairwise interaction energy at the SCF
level is repulsive for all states. The total interaction energy at this level is re-
pulsive for almost all regions except for the B1 short-range regions. The to-
tal SCF interaction energy in the B1 state exhibits unusual behavior for the
studied regions: a shallow maximum at 3.8 Å is observed and a much deeper
minimum at 2.8 Å. The latter minimum is due to the three-body SCF defor-
mation that accompanies the Heitler–London exchange effect (see the next
Section).

To summarize, the B1 state is the least repulsive and the B2 state the most
repulsive. No minimum at the SCF level for the equilateral-triangle arrange-
ment is observed.

The total interaction energy calculated at the correlated levels of theory
has the opposite sign to that obtained at the SCF level for all distances, but
the sequence of states is preserved.

The nonadditive forces reverse the order of the A1 and B2 levels for inter-
mediate and short ranges. Within the two-body approximation, the B2 state
is lower than A1 but allowing for nonadditivity reverses this order. More-
over, the minima for the A1 and B2 states change locations and depth. Al-
lowing for the nonadditivity shortens the location of the minimum for the
A1 state from 5.4 to less than 4.0 Å, and lengthens the NaB distance for the
B2 symmetry from less than 4.0 to ca 4.8 Å. The minimum energy is much
deeper for the A1 symmetry of the Na2B trimer and more shallow for the B2
symmetry.

Perturbation Method: Three-Body Exchange, Induction, and Dispersion

Genuine Nonadditive Terms from Perturbation Treatment

Perturbation calculations employed TRURL codes34, adapted to treat open-
shells within the UHF approximation47, including two- and three-body cor-
rections. The program calculates the following three-body terms: the
Heitler–London-exchange, the second- and third-order induction, and the
third-order dispersion. The monomers are calculated with TCBS and the p
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orbital is oriented as in the trimer. Therefore, one obtains only pure genu-
ine three-body effects.

All computations were performed for the interatomic distance ranging
from 2.5 to 7.6 Å of the equilateral triangle geometry of Na2B. This range
covers the minimum of pairwise interactions of (3Σ)Na2 (5.2 Å) and (3Σ)NaB
(5.7 Å), and is close to the minimum of (3Π)NaB (2.5 Å).

The three-body terms: Heitler–London exchange ε exch
HL , third-order disper-

sion ε disp
( )30 , and induction ε ind,r

( )30 (iq-iq) are presented in Table XV and shown
in Fig. 9. The latter term represents a part of the third-order induction term
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TABLE XV
The IMPPT results for the equilateral-triangle arrangement of the Na2B trimer in the A1, B1,
and B2 symmetry states. Energy in µEh

R, Å εdisp
( )30 εind, r

( )30 (iq-iq) εexch
HL ∆E SCF ∆Edef

SCF

A1 state

2.5 1794.44 37399.44 –25650.64

4 147.79 523.33 –3358.70 –3410.56 –51.86

4.4 74.91 176.07 –1702.90 –1461.30 241.60

5 27.51 48.85 –564.36 –434.49 129.86

6 5.60 9.97 –75.97 –47.44 28.53

7.6 0.59 1.03 –2.60

B1 state

2.5 1523.76 35524.95 –15840.15 –27888.68 –12048.53

4 137.11 785.26 –1372.40 –1285.26 87.14

4.4 70.39 274.91 –597.42 –539.21 58.21

5 26.26 64.37 –150.10 –130.94 19.16

6 5.50 8.63 –9.60 –8.49 1.11

7.6 0.61 0.76 0.22 0.13 –0.09

B2 state

2.5 1628.11 33193.37 1532.60

4 148.25 635.65 277.99 1046.99 769.00

4.4 76.17 219.61 180.62 550.44 369.82

5 28.42 53.56 86.78 204.01 117.24

6 5.97 8.33 19.95 34.86 14.91

7.6 0.67 0.83 1.22
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FIG. 9
The three-body nonadditive terms from the IMPPT calculation for the equilateral arrangement
of Na2B. The labels: disp, ind, (HL)ex, SCF, (SCF)def denote: εdisp

(30) , εind,r
(30) (iq-iq), Heitler–London

exchange, SCF nonadditivity, and SCF deformation, respectively. A1 state, Θ = 60° (a); B1 state,
Θ = 60° (b); B2 state, Θ = 60° (c)
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which corresponds to the electrostatic interaction of the induced moments
of the Na atoms generated by the electric field of B.

A major part of the nonadditivity is exchange in nature and is located in
the SCF and the Heitler–London exchange terms. All other contributions
appear to be secondary.

The Heitler–London exchange nonadditivity of the Na2B system is nega-
tive for the A1 and B1 symmetries and positive for the B2 symmetry. The ex-
change nonadditivity is in good agreement with the total supermolecular
SCF nonadditivity. It has the same sign as the SCF nonadditivity, and has a
comparable magnitude for all states.

The best agreement of the SCF nonadditivity is for the B1 state, as the dif-
ference between SCF and Heitler–London results amounts to about 10%.
Similarly, SCF non-additivity for the A1 state differs by a few percentage
points for short-range distances, but for long-range distances it amounts to
as much as half of the exchange effects. The B2 state SCF nonadditivity is
about twice as big as the Heitler–London exchange for the studied distances.

Although the main part of the nonadditivity is of the exchange nature,
the induction and dispersion terms cannot be neglected, especially for A1
and B2, for which the correlated MP3 nonadditivity is about twice as big
as the SCF nonadditivity. Moreover, the MP3 long-range interaction in
B1 state exhibits the maximum at 6 Å, which cannot be explained by ex-
change terms, which behave monotonically.

In general, the MP3 nonadditivity is better recovered by the sum of SCF
and dispersion three-body terms for smaller distances. The sum of disper-
sion, induction and Heitler–London exchange terms agrees better with MP3
for the long-range distances. Both models recover a shallow maximum of
the interaction energy of the B1 state at about 6 Å, and a monotonic de-
crease in the interaction energy for the B2 state with increasing R.

The Exchange Nonadditivity and Pseudodimer Treatment of Na2B

In this Section decomposition of the first-order exchange energy into the
single-exchange SE and triple-exchange TE components is carried out by
means of the pseudodimer approach29,34,48. The electrostatic model of the
SE term in Na2B is discussed and analyzed.

The Heitler–London exchange nonadditivity was partitioned into the TE
term and various SE components. The total SE term, which is denoted here
as SE_tot, is divided into three parts. Each of the SE terms represents the ex-
change of electrons between the various two monomers in the trimer. The
symbol in the bracket labels monomers in which electrons are exchanged.
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For example, SE_(Na..Na) represents the exchange of electrons between two
Na atoms coupled with the electrostatic interaction with the B atom48,49.

Detailed information about partial and total SE terms, the TE term, and
the total Heitler–London exchange nonadditivity is presented in Table XVI.

The TE term is negative for all studied distances and for each symmetry.
For the B2 symmetry, it decreases most rapidly, with the highest negative
value for R of 2.5 Å, and the lowest absolute value for R = 7.6 Å.
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TABLE XVI
The SE and TE contributions to the Heitler–London nonadditivity for the equilateral-triangle
arrangement of Na2B in the A1, B1, and B2 states

R, Å εexch
HL SE_(B..Na) SE_(Na..Na) SE_tot TE

A1 state

2.5 –25650.64 10377.91 11833.42 32589.25 –58239.88

4 –3358.70 342.53 321.13 1006.19 –4364.89

4.4 –1702.90 124.08 38.48 286.63 –1989.53

5 –564.36 25.38 –46.23 4.53 –568.88

6 –75.97 1.56 –20.32 –17.20 –58.76

7.6 –2.60 0.01 –1.56 –1.54 –1.06

B1 state

2.5 –15840.15 3130.50 14779.79 21040.80 –36880.94

4 –1372.40 34.20 1056.00 1124.39 –2496.79

4.4 –597.42 10.19 474.84 495.21 –1092.63

5 –150.10 1.67 137.83 141.17 –291.27

6 –9.60 0.07 16.83 16.98 –26.57

7.6 0.22 0.00 0.62 0.62 –0.40

B2 state

2.5 1532.61 444.40 18333.19 19154.96 –17622.35

4 277.99 –76.45 1487.59 1336.01 –1058.02

4.4 180.62 –28.74 699.62 642.43 –461.81

5 86.78 –5.79 218.59 207.02 –120.24

6 19.95 –0.33 30.37 29.71 –9.76

7.6 1.22 0.00 1.32 1.31 –0.09



The ordering of states is B2 > B1 > A1. The SE_(Na..Na) exchange effect is
positive for the B1 and B2 symmetry but negative at the long range of the A1
symmetry. For the B2 symmetry, it is about twice as repulsive as for the B1
symmetry.

Except for the short range of the A1 state, the anisotropy of SE_(Na..Na)
agrees qualitatively well with the model of the exchange quadrupole inter-
acting with a third species. In our case, such an exchange quadrupole inter-
acts with the permanent quadrupole located at the B center. This
permanent quadrupole moment on B is due to the axial symmetry of the
electronic density of the singly-occupied p orbital centered at the B atom.

The plausible explanation of a dramatic change of the sign of SE_(Na..Na)
for the A1 symmetry for distances shorter than 4.6 Å is a significant increase
of higher DE terms. These terms are proportional to the fourth power of the
overlap integral and could be of the opposite sign to the SE term:

SE = –〈Vc2〉 + 〈c2〉〈 V〉 (33)

DE ≅ –SE · 〈c2〉 , (34)

where the c2 is operator of the exchange of electrons and V is electrostatic
Coulomb operator. An additional argument is that the change of sign oc-
curs for distances smaller than the van der Waals radius of the Na atom
(equal to the equilibrium distance of the Na–Na potential), where the ex-
changes of inner electrons should be more significant.

The term SE_(Na..B) exhibits interesting orientational anisotropy (Fig. 10).
It may be interpreted in terms of exchange and overlapping of Na and B
half-filled orbitals. For the B1 state, the overlap integral of the boron p or-
bital with the s orbital of any of the Na atoms vanishes due to the Π sym-
metry. This results in a considerable decrease in the exchange effect
SE_(Na..B) with respect to other symmetry states. Thus the SE_(Na..B) term
in the case of the B1 state is over one order of magnitude lower than for the
A1 state. The SE_(Na..B) term of the B1 state may be thought of as an indica-
tor of how extensive the inner electron cloud of boron is (the rapid increase
in SE_(Na..B) begins with penetration of the inner shell of B by the Na elec-
tron cloud).

The absolute values of the Na..B exchanges in the B2 state are also much
lower than for the A1 state. This is caused by a greater similarity of that state
to the Π symmetry rather than to the Σ symmetry. Moreover, the SE_(Na..B)
term for each state is much lower than the relevant SE_(Na..Na) term.
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Electrostatic Model of SE

Historically, the Jansen effective-electron model of exchange effects was the
first model to explain the exchange nonadditivity25. The idea is based on
the electrostatic interaction of an exchange quadrupole located at the cen-
ter of mass of two atoms with a permanent multipole located on the third
atom (see also ref.26 for extensions of this model).

An electrostatic model involving the interaction of the exchange
quadrupole on Na2 with the quadrupole moment of B predicts attractive ex-
change energy for A1 and repulsive for B1 and B2. Moreover, the repulsive
effect for B2 should be greater than the repulsive effect for B1. Figure 11
shows the orientational dependence between quadrupole on B and the
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FIG. 10
The SE_(Na..B) exchange terms for the A1, B1, and B2 symmetry states of Na2B. Θ = 60°
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FIG. 11
The SE_(Na..Na) term could be intuitively understood as the electrostatic interaction energy
between a permanent quadrupole located at the B atom with the exchange quadrupole in the
middle of the Na2 dimer
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exchange quadrupole on Na2. Such a model qualitatively explains the be-
havior of the SE_(Na-Na) term (see Table XVI) with respect to the electronic
state.

SUMMARY AND CONCLUSIONS

The Na2B, Na3 and H3 trimers in the lowest quartet states were studied by
ab initio methods, using both the supermolecular approach and the
intermolecular Møller–Plesset perturbation theory. Partitioning of the non-
additive contribution into the orientational two-body part and the genuine
three-body part was proposed.

The lowest quartet state of the Na3 trimer and all the three lowest quartet
states of the Na2B trimer were found to be bound. The geometries of these
clusters are essentially determined by two-body forces. Thus, the sodium
trimer is an equilateral triangle. By way of contrast, the Na2B trimer is ei-
ther (almost) collinear (for the quartet states related to the B1 and B2 sym-
metries of the 2p boron orbital) or triangular (for the quartet state related
to the A1 symmetry of the 2p boron orbital). This diversity results from the
orientational nonadditivity, and is due to the interplay between the Π and
Σ states of the NaB moieties. The former state is strongly bound with the
bond length close to 2.5 Å, whereas the latter state reveals a typically weak
van der Waals bond with the long equilibrium distance of 5.7 Å. As a conse-
quence, the lowest quartet state of Na2B is collinear, the p-symmetry singly
occupied orbital being perpendicular to the Na2B triangle (B1 symmetry).

In the title metal trimers, in the region of the van der Waals minima,
the genuine nonadditivity is very important, and amounts to 30% in Na2B,
and up to 70% in Na3. The leading nonadditive term is the triple-exchange
Heitler–London exchange term. For triangular arrangements it considerably
enhances the overall stabilization. The single-exchange term and the SCF
deformation play only a secondary role. The dispersion nonadditivity is
negligible.

The isotropic part of BSSE is large and must be corrected by the counter-
poise method. The anisotropic contribution to BSSE is practically negligi-
ble.
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